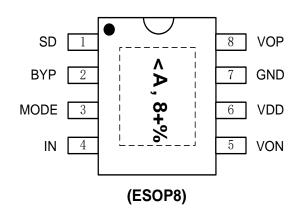


HM8871

概述

HM8871 是一款5W、单声道AB类/D类工作模式切换功能、超低EMI、无需滤波器的音频功率放大芯片。HM8871通过一个MODE管脚可以方便地切换为AB类模式,完全消除EMI干扰。工作电压2.5V-5.5V,在D类放大器模式下可以提供高于90%的效率,新型的无滤波器结构可以省去传统D类放大器的输低通滤波器,从而节省了系统成本和PCB空间,是便携式应用的理想选择。HM8871采用独有的DRC(Dynamic range control)技术,降低了大功率输出时,由于波形切顶带来的失真,相比同类产品,动态反应更加出色。LHM8871采用ESOP-8封装。


特点

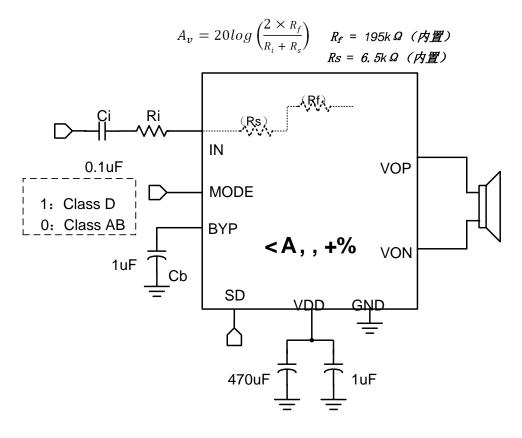
- 无滤波的 D 类/AB 类放大器、低静态电流和 低 EMI
- FM 模式无干扰
- 优异的爆破声抑制电路
- 低底噪、低失真
- DRC 动态失真矫正电路
- 10% THD+N, VDD=5V, 4Ω 负载下,提供 高达 3W 的输出功率
- 10% THD+N, VDD=5V, 2Ω 负载下,提供 高达 5W 的输出功率
- 短路电流保护
- 欠压保护
- 关断电流 < 0.5uA
- 多种功率封装模式: ESOP-8
- 过热保护

应用

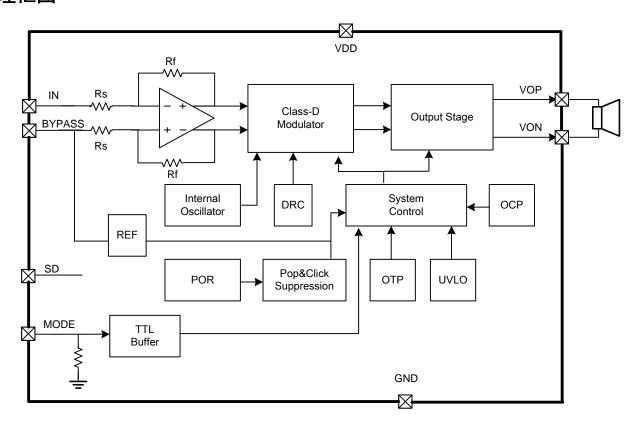
- 蓝牙音箱
- 拉杆音箱、USB 音响
- 视频机、扩音器等

管脚定义

封装信息


产品	封装形	封装尺寸	脚间距
	式	(mm)	(mm)
HM8871	ESOP-8		

管脚信息


序号	符号	描述
1	SD	关断控制,高电平有效
2	ВҮР	内部共模参考电压
3	MODE	高电平 D 类,低电平 AB 类, 默认是 AB 类
4	IN	模拟输入端,反相
5	VON	模拟输出端负极
6	VDD	电源正
7	GND	电源地
8	VOP	模拟输出正极

典型应用图

原理框图

管脚说明

No.	管脚名称	10	功能
1	SD	I	关断控制,高电平有效
2	BYP	Ю	内部共模参考电压
3	MODE	I	高电平 D 类,低电平 AB 类,默认是 AB 类
4	IN	I	模拟输入端,反相
5	VON	0	模拟输出端负极
6	VDD	Ю	电源
7	GND	Ю	电源地
8	VOP	0	模拟输出正极

最大额定值(T₄=25℃)

参数名称	符号	数值	单位
工作电压	V_{cc}	6.0	V
存储温度	$T_{ m stg}$	-65℃-150℃	${\mathbb C}$
输入电压		-0.3 to + $(0.3+V_{cc})$	V
功率消耗	P_{D}	见附注1	W
结温度		160℃	${\mathbb C}$

附注1:最大功耗取决于三个因素: T_{JMAX} , T_A , θ_{JA} , 它的计算公式 P_{DMAX} = $(T_{JMAX}$ - $T_A)/\theta_{JA}$, <A, +%的 T_{JMA} =150 $^{\circ}$ C。 T_A 为外部环境的温度, θ_{JA} 取决于不同的封装形式。

电气参数

一、CLASS D 模式

1) 静态电气参数

MODE=VDD, ClassD 模式,V_{DD}=5V,T_A=25℃的条件下:

信号	参数	测试	条件	最小值	典型值	最大值	单位
V_{DD}	电源电压			2.5	5	5.5	V
I _{DD}	静态电源电流	MODE=VDD; V _{DD} =5V, I _O =0A		2	5	8	mA
I _{SHDN}	关断电流	V _{DD} =2.5V 到 5.5	V			1	uA
F_{SW}	振荡频率	V _{DD} =2.5V 到 5.5V			480		kHz
Vos	输出失调电压	$V_{DD}=5V$, $V_{IN}=0V$			10		mV
2	效率	THD+N=10%, f=1kHz,R _L =2 Ω ; THD+N=10%, f=1kHz,R _L =4 Ω ;			87		%
η	双竿				90		
OTP	过温保护				155		°C
D	I _{DS} =0.5A	P_MOSFET		180		mΩ	
R _{DSON}	静态导通电阻	V _{GS} =5V	N_MOSFET		140		

2) 动态电气参数

MODE=VDD, ClassD 模式,V_{DD}=5V,T_A=25℃的条件下:

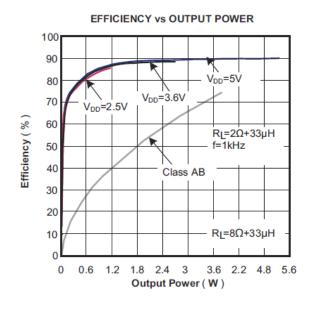
信号	参数	测试条件		最小值	典型值	最大值	单位
		THD+N=10%, f=1kHz	V _{DD} =5V		2.9		
		$R_L=4\Omega$;	V _{DD} =3.6V		2.3		W
			V _{DD} =3V		1.3		
P_{o}	输出功率	THD+N=1%, f=1kHz	V _{DD} =5V		2.5		
		$R_L=4\Omega$;	V _{DD} =3.6V		1.6		W
			V _{DD} =3V		0.8		
		THD+N=10%, f=1kHz	V _{DD} =5V		4.9	5.5	
		$RL=2\Omega$;	V _{DD} =3.6V		3.2	3.5	W
			V _{DD} =3V		2.3	2.6	
		THD+N=1%, f=1kHz	V _{DD} =5V		4.6	4.8	
		RL=2Ω;	V _{DD} =3.6V		2.8	3	w
			V _{DD} =3V		1.4	1.5	
THD+N	总谐波失真加噪声	V_{DD} =5V P_o =0.6W, R_L =8 Ω	f=1kHz		0.12		%
		V_{DD} =3.6V P_o =0.6W, R_L =8 Ω			0.1		
		$V_{DD}=5V$ $P_0=1W,R_L=4\Omega$	f=1kHz		0.12		
		V_{DD} =3.6V P_{o} =1W, R_{L} =4 Ω			0.1		
PSRR	电源电压抑制比	V_{DD} =5V, V_{RIPPLE} =200m $^{\circ}$ R _L =8 Ω , C_{B} =2.2 μ F	V _{RMS} ,		64		dB
SNR	信噪比	V _{DD} =5V, V _{orms} =1V, Gv=	=20dB		85		dB

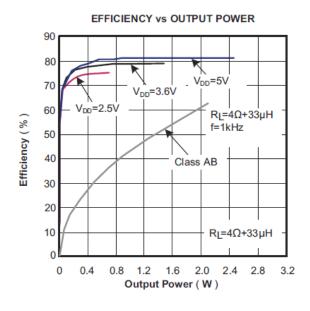
二、CLASS AB 模式(ESOP-8封装)

1) 静态电气参数

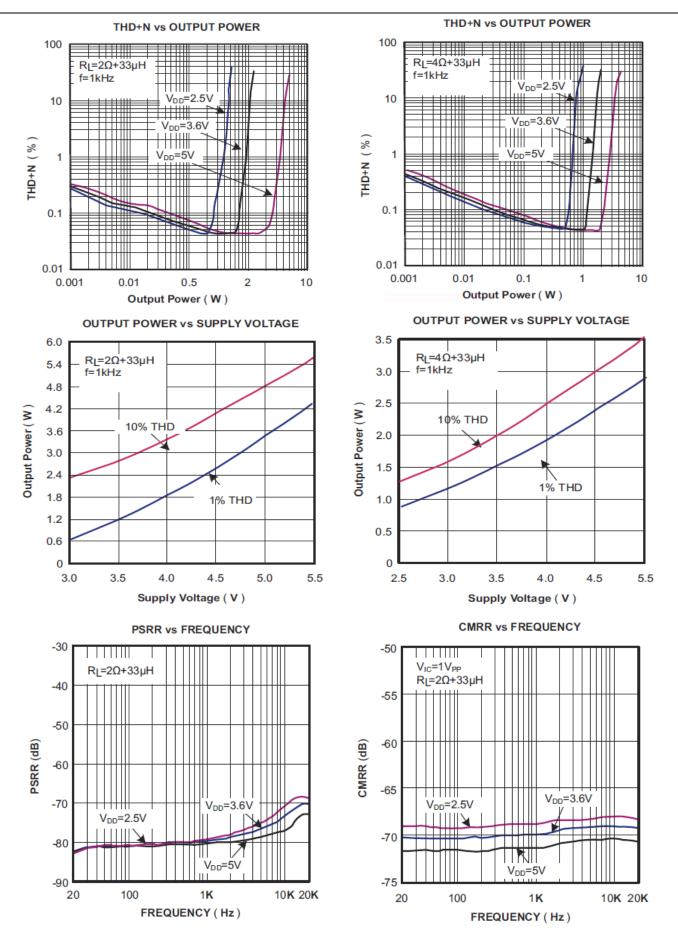
MODE=GND, ClassAB 模式, V_{DD}=5V, T_A=25℃的条件下:

信号	参数	测试条件	最小值	典型值	最大值	单位
V_{DD}	电源电压		2.5	5	5.5	V
I _{DD}	静态电源电流	$V_{DD}=5V$, $I_{O}=0A$	6	10	14	mA
I _{SHDN}	关断电流	V _{DD} =2.5V 到 5.5V			1	uA
Vos	输出失调电压	$V_{DD}=5V$, $V_{IN}=0V$		10		mV
ОТР	过温保护			155		°C




2) 动态电气参数

MODE=GND, ClassAB 模式, V_{DD}=5V, T_A=25℃的条件下:


信号	参数	测试条件		最小值	典型值	最大值	单位
		THD+N=10%, f=1kHz	V _{DD} =5V		2.9		
		$R_L=4\Omega$;	V _{DD} =3.6V		2		W
			V _{DD} =3V		1.3		
P _o	输出功率	THD+N=1%, f=1kHz	V _{DD} =5V		2.6		
		$R_L=4\Omega$;	V _{DD} =3.6V		1.6		W
			V _{DD} =3V		0.8		
		THD+N=10%, f=1kHz	V _{DD} =5V		4.9	5.5	
		$R_L=2\Omega$;	V _{DD} =3.6V		3.2	3.5	W
			V _{DD} =3V		2.3	2.6	
		THD+N=1%, f=1kHz	V _{DD} =5V		4.5	4.6	
		$R_L=2\Omega$;	V _{DD} =3.6V		2.7	2.9	W
			V _{DD} =3V		1.4	1.5	
THD+N	总谐波失真加噪声	V_{DD} =5V P_o =0.6W, R_L =8 Ω	f=1kHz		0.18		%
		V_{DD} =3.6V P_{o} =0.6W, R_{L} =8 Ω			0.15		
		V_{DD} =5V P_o =1W, R_L =4 Ω	f=1kHz		0.15		
		V_{DD} =3.6V P_{o} =1W, R_{L} =4 Ω			0.12		
PSRR	电源电压抑制比	V_{DD} =5V, V_{RIPPLE} =200m V R_{L} =8 Ω , C_{B} =2.2 μ F	V _{RMS} ,		69		dB
SNR	信噪比	V _{DD} =5V, V _{orms} =1V, Gv=	=20dB		82		dB

典型工作特性

应用信息

1、驱动 2Ω 和 4Ω 负载时PCB 布局及补偿调节考虑事项

有阻抗的负载两端加上交流电压可产生功耗,负载的功耗随运算放大器输出端和负载间的连线(PCB连线和金属连线)而变化。连线产生的阻抗消耗是我们不想要的,比如, 0.1Ω 的连线阻抗可使 4Ω 负载的功率从2.1W减小到2.0W。当负载阻抗减少时,负载功耗减少的问题更加加重。所以,为能得到高质量的输出功率和较宽的工作频率,PCB中输出端与负载的连接应尽量宽。

2、最大增益

HM8871的增益由内部电阻 R_f 和 R_s 以及外接电阻 R_i 决定, R_s =6.5k Ω , R_f =195k Ω ;用户可以外接 R_i 电阻,控制整体的增益。

$$A_v = 20log\left(\frac{R_f}{R_i + R_s}\right)$$

例如芯片外部串接一个 20 kΩ, 那么增益计算公式如下:

$$A_v = 20log\left(\frac{195k\Omega}{13k\Omega + 6.5k\Omega}\right) = 20dB$$

输入电阻尽量靠近HM8871的输入管脚,可以减小PCB板上噪声的干扰。

3、偏置电容

模拟基准准旁路电容(CBYP)是最关键的电容并与几个重要性能相关,在从关闭模拟启动或复位时,CBYP 决定了放大器开启的速度。第二个功能是减少电源与输出驱动信号耦合时制造的噪声,这些噪声来自于内部模拟基准或放大器等其它器件,降低了HM8871的PSRR和THD+N性能。

4、欠压保护(UVLO)

HM8871具有低电压检测电路,当电源电压下降到2.0V以下时,HM8871关闭输出,直到VDD≥2.2V时器件再次开启回到正常状态。

5、电源去耦

HM8871是高性能CMOS音频放大器,需要足够的电源退耦以保证输出THD和PSRR尽可能小。电源的退 耦需要两个不同类型的电容来实现。为了更高的频率响应和减小噪声,一个适当等效串联电阻(ESR)的陶

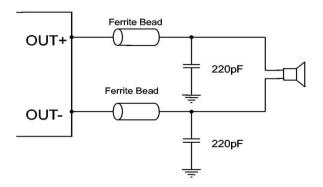
瓷电容,典型值1.0μF,放置在尽可能靠近器件VDD端口可以得到最好的工作性能。为了虑除低频噪声信号,推荐放置一个470μF或更大的电容在电源侧。

6、输入电容

对于便携式设计,大输入电容既昂贵又占用空间。因此需要恰当的输入耦合电容,但在许多应用便携式扬声器的例子中,无论内部还是外部,很少可以重现低于100Hz至150Hz的信号。因此使用一个大的输入电容不会增加系统性能,输入电容Ci和输入电阻Ri组成一个高通滤波器,其中Ri由外接电阻和内部输入电阻Rs=16kΩ之和确定,切断频率为

$$f_c = \frac{1}{2\pi R_i C_i}$$

除了系统损耗和尺寸,滴答声和噼噗声受输入耦合电容Ci 的影响,一个大的输入耦合电容需要更多的电荷才能到达它的静态电压(1/2VDD)。这些电荷来自经过反馈的内部电路,和有可能产生噼噗声的器件启动端,因此,在保证低频性能的前提下减小输入电容可以减少启动噼噗声。


7、模拟参考电压端电容

HM8871包含有使开启或关断的瞬态值或"滴答声和爆裂声"减到最小的电路。讨论中开启指的是电源电压的加载或撤消关断模式。当电源电压逐渐升至最终值时,HM8871的内部放大器就好比配置成整体增益的缓冲器一样,内部电流源加载一个受线性方式约束的电压到BYPASS管脚。理论上输入和输出的电压高低将随加到BYPASS管脚的电压而改变。直到加载至BYPASS管脚的电压升到VDD/2,内部放大器的增益保持整体稳定。加载到BYPASS管脚上的电压一稳定,整个器件就处于完全工作状态。HM8871的输出达到静态直流电压的时间越长,初始的瞬态响应就越小。选择2.2uf 的电容同时配以一个在0.1uf 到0.39uf 间变化的小电容,可以产生一个滴答声和爆裂声都较小的关断功能。由以上讨论可知,选择一个不超过指定带宽要求的电容Ci 可以帮助降低滴答声现象。

8、EMI的减小

在电源端加一个 470uF 以上的耦合电容,能有效减小 EMI,前提是放大器到扬声器的距离小于(<20CM)。 大部分应用是需要一个如图 2 所示的磁珠滤波器,滤波器有效地减小了 1MHz 以上的 EMI,该应用,在高频是应选择高阻抗的,而在低频率是应选择低阻抗的。

