

LM4871 **Boomer** Audio Power Amplifier Series

1.1W Audio Power Amplifier with Shutdown Mode

Features

THD at 1 kHz at 1W continuous average output power into 8ÁJ @ ÁÃO.5%

Output power at 10% THD+N at 1 kHz into 8ÁJ @ 1.5W

Shutdown Current 0.6 μA

General Description

The LM4871 is a bridge-connected audio power amplifier capable

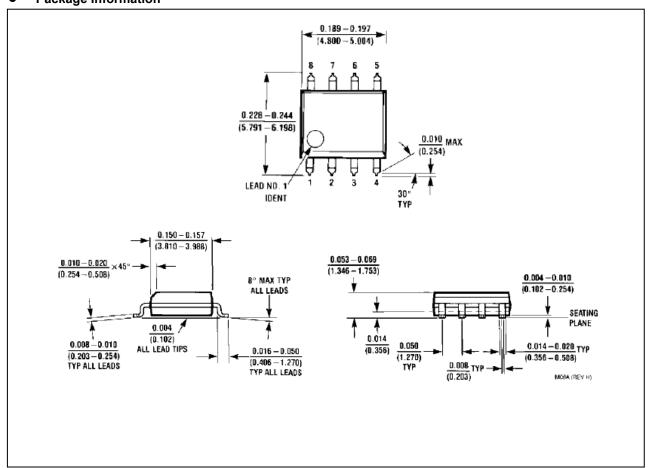
of delivering typically 1.1W of continuous average power to an 8U @ Áoad with 0.5% (THD) from a 5V power supply.

Boomer audio power amplifiers were designed specifically to Low provide high quality output power with a minimal amount of external components. Since the LM4871 does not require output PT PT

coupling capacitors, bootstrap capacitors, or snubber networks, it is optionally suited for low-power portable systems.

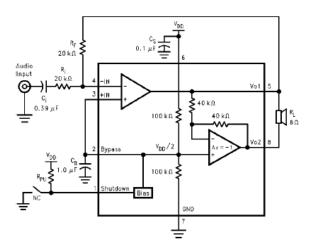
The LM4871 features an externally controlled, low-power consumption shutdown mode, as well as an internal thermal shutdown protection mechanism.

The unity-gain stable LM4871 can be configured by external gain-setting resistors.

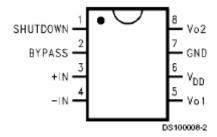

Applications

Portable Computers

Desktop Computers


Low Voltage Audio Systems

• Package Information

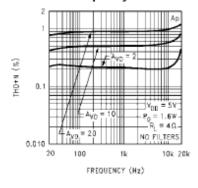


Typical Application

PIN CONFIGURATION

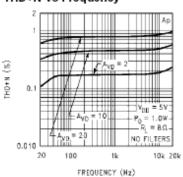
● **Absolute Maximum Ratings** @T_A = 25°C unless otherwise noted

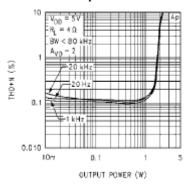
Electrical Characteristics

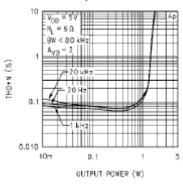

The following specifications apply for VDD = 5V unless otherwise specified. Limits apply for TA = 25°C.

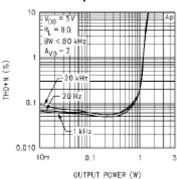
Symbol	Parameter	Conditions	Typical	Limit	Units
VDD	Supply Voltage			2.0-5.5	V
IDD	Quiescent Power Supply Current	VIN = 0V, Io = 0A	6.5	10	mA
ISD	Shutdown Current	VPIN1 = VDD	0.6	2	uA
VOS	Output Offset Voltage	VIN = 0V	5	50	mV
Ро	Output Power	THD = 0.5% (max); f = 1 kHz	1.1	1	W
		THD+N = 10%; f = 1 kHz	1.5		W
THD+N	Total Harmonic Distortion+Noise	Po = 1 Wrms; AVD = 2; 20 Hz < f< 20 kHz	0.25		%
PSRR	Power Supply Rejection Ratio	VDD = 4.9V to 5.1V	65		dB

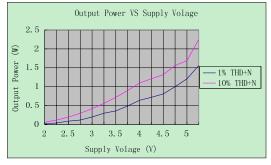
• Typical Performance Characteristics


THD+N vs Frequency

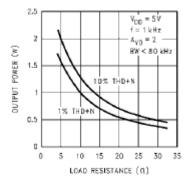

THD+N vs Frequency


THD+N vs Frequency

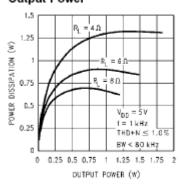

THD+N vs Output Power

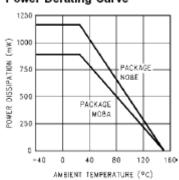


THD+N vs Output Power

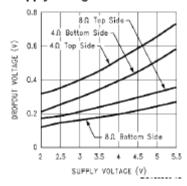


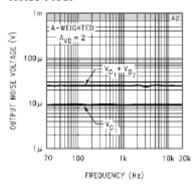
THD+N vs Output Power

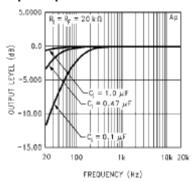


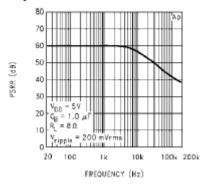

Output Power vs Load Resistance

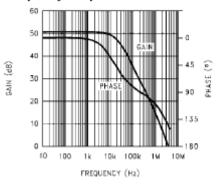
Power Dissipation vs Output Power

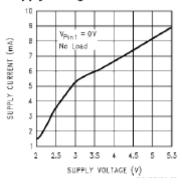

Power Derating Curve


3/4


Clipping Voltage vs Supply Voltage


Noise Floor


Frequency Response vs Input Capacitor Size


Power Supply Rejection Ratio

Open Loop Frequency Response

Supply Current vs Supply Voltage

