

超低功耗 4 线电阻式触摸屏控制器

特征

- 四线触摸屏控制接口
- 独有的节电技术,系统功耗降低 75%
- 2.2V 至 3.6V 的工作电压
- 1.5V 至 3.6V 数字 I/0 接口
- 内置 2.5V 基准
- 可编程 8bit 或 12bit 精度
- 3线的串行接口
- 比值转换
- 压力检测
- 直接电池电压检测 (0V 至 6V)
- 片上温度检测
- 增强的触摸屏接口 ESD 保护等级: 8KV (HBM)
- 采用 TSS0P16、QFN16 封装,符合 RoHS 规范

QFN16 封装 4mm X 4mm -40℃~85℃

TSSOP16 封装 -40℃~85℃

应用

- 蜂窝电话
- PDA 及其它手持设备
- 销售终端机(POS)
- 触摸屏监视器

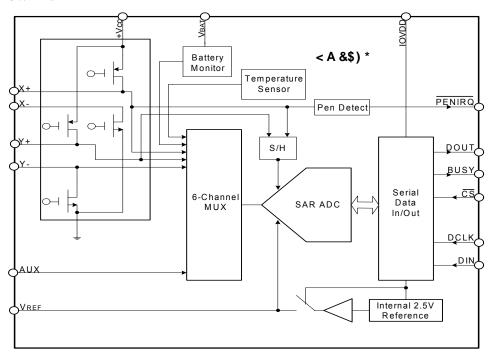


图 1 结构框图

概要

HM2056 是一款 4 线电阻式触摸屏控制器,支持 1.5V 至 3.6V 的 I/0 接口,其中包括一个带同步串口的 12 位 A/D 转换器,以及用来驱动阻性触摸屏的低导通电阻开关。HM2056 使用内部+2.5V 参考电压或外部参考电压,可以进行绝对或比值测量。另外,HM2056 具有一个电池监测通道、一个附加 A/D 输入端和一个片上温度传感器,并且在无需外部元件的情况下可以进行触摸压力测量。

当使用外部参考电压时, HM2056 可以确保电源电压降至+2. 2V 仍能正常工作;使用内部参考电压时,可以确保降至+2. 7V 仍能正常工作。在 2. 7V 电源电压, 125kHz 采样率下的 A/D 转换器功耗典型值小于 $750\,\mu$ W。

HM2056 采用独有的节电技术驱动触摸屏,系统功耗比同类产品低 75%。HM2056 的低功耗性能使其成为电池供电系统的理想选择,如带电阻性触摸屏的个人数字助理和其它便携式设备。HM2056 采用 16 引脚的 QFN 和 TSSOP 封装,额定的工作范围为-40 \mathbb{C} 至 85 \mathbb{C} 。

引脚结构

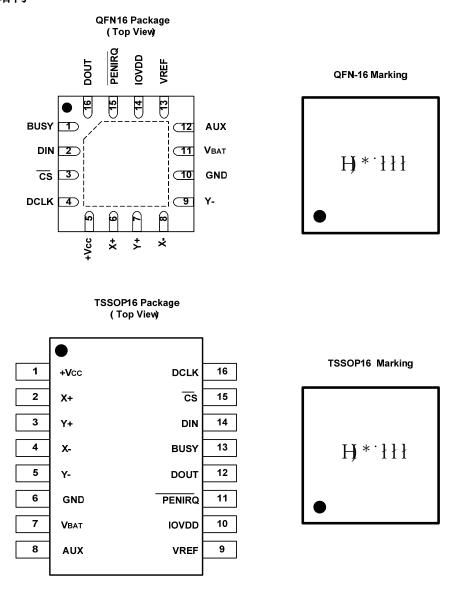


图 2 QFN16/TSSOP16 引脚分布

引脚定义

TSSOP 管脚	QFN 管脚	名称	描述
1	5	+V _{CC}	电源
2	6	X+	X+输入
3	7	Y+	Y+输入
4	8	X-	X-输入
5	9	Y-	Y-输入
6	10	GND	地
7	11	VBAT	电池检测输入
8	12	AUX	附加输入
9	13	V_{REF}	参考电压的输入/输出
10	14	IOVDD	数字 I/O 电源
11	15	PENIRQ	中断响应
12	16	DOUT	串行数据输出端。当 CS 为高时,输出高阻
13	1	BUSY	Busy 输出端。当 CS 为高时,输出高阻
14	2	DIN	串行数据输入端。当 CS 为低,在 DCLK 的下降沿,数据锁存。
15	3	CS	片选信号,控制转换时间和使能串行输入/输出寄存器。
16	4	DCLK	外部时钟输入。控制 A/D 转换器转换过程和同步串行输入和输出数据。

产品信息

产品型号	温度范围	封装	RoHS	印章	封装类型
HM2056QN	-40°C to +85°C	QFN16 4X4	YES	T56 ***	3000/每卷带
HM2056TS	-40℃ to +85℃	TSSOP16	YES	T56 ***	3000/每卷带

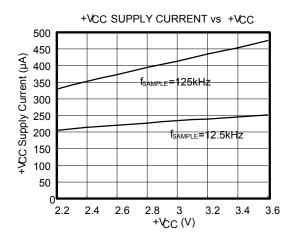
极限的工作范围

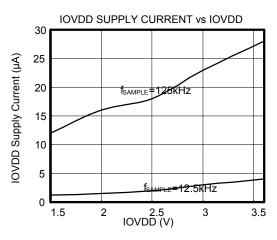
参数	描述
+V _{cc} 和 IOVDD 到地	-0.3V 至 3.6 V
模拟输入到地	-0.3V 至 V _{CC} +0.3 V(除 V _{BAT} 外)
数字输入到地	-0.3V 至 IOVDD+ 0.3 V
功耗	250 mW
最大的结温	150℃
储存的温度范围	-65℃ to 150℃
最高温度(焊接,10秒)	+260°C
ESD (per MIL STD-883 HBM)	2000 V 8000 V(触摸屏接口 X+、X-、Y+、Y-)
Latch up (per JEDEC STD-NO.78)	200 mA

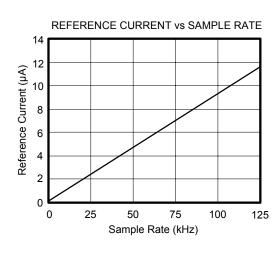
电气特性

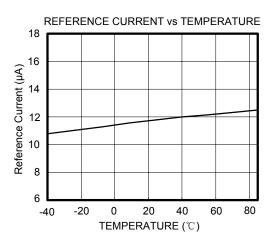
测试条件: +V_{CC} =IOVDD= +2.7V, f_{SAMPLE} = 125kHz, f_{CLK} = 16 x f_{SAMPLE} = 2MHz, T_A = −40℃至 +85℃,V_{REF} = 2.5V,12-bit 模式,数字输入为 GND 或 IOVDD,除非特殊说明。

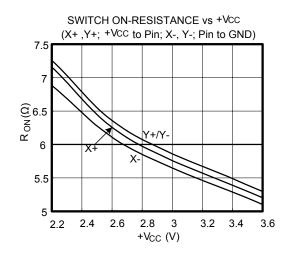
参数	条件	最小	典型	最大	单位
模拟输入			I		
全面的输入范围	正端输入一负端输入	0		V_{REF}	V
<i>t</i> A 2 世田	正端输入	-0.2		+V _{CC} +0.2	V
输入范围	负端输入	-0.2		0.2	V
电容			25		pF
关机电流			0.1		μΑ
系统性能			•		
分辨率			12		Bits
漏码			11		Bits
积分线性误差			±2		LSB
漂移误差				±6	LSB
增益误差	外部 V _{REF}			±4	LSB
电源抑制比			70		dB
动态采样					
转换时间				12	CLK
采样时间		3			CLK
转换率				125	kHz
开关驱动管					
等效电阻	Y+, X+		6		Ω
寸 双电阻	Y-, X-		6		Ω
驱动电流(1)	持续 100ms			50	mA
基准输出					
内部基准电压		2.45	2.50	2.55	V
内部基准漂移			30		ppm/°C
静态电流			470		μΑ
关机电流			1		μΑ
基准输入					
范围		1.0		V _{CC}	V
输入阻抗			1		GΩ
电池检测					
输入电压范围		0.5		6.0	V
給) 阳 岩	采样电池		10		kΩ
输入阻抗	电池检测关闭		1		GΩ
精度	VBAT = 0.5V to 5.5V, 外部 V _{REF} = 2.5V,	-2		+2	%

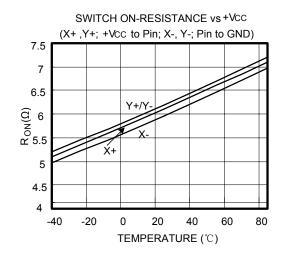

	VBAT = 0.5V to 5.5V, 内部基准	-3		+3	%
温度检测					
温度范围		-40		85	°C
分辨率	TEMP1 ⁽²⁾		1.6		°C
刀	TEMP0		0.3		°C
精度	TEMP1 ⁽²⁾		±2		°C
相反	TEMP0		±3		°C
电源需求					
+V _{cc}	典型应用	2.7		3.6	V
TVCC	工作范围	2.2		3.6	V
IOVDD		1.5		+V _{CC}	V
	内部基准关闭		380		μA
静态电流	内部基准打开		850		μA
那您电机	f _{SAMPLE} = 12.5kHz		220		μA
	关闭模式			3	μA
功耗				1.8	mW

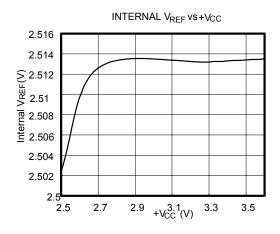

- (1) 设计值, 电流超过 50mA 可能会导致芯片退化。
- (2) 计算 TEMP0 与 TEMP1 的之间的差值,无须校准。

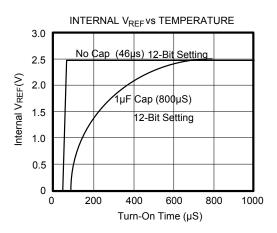


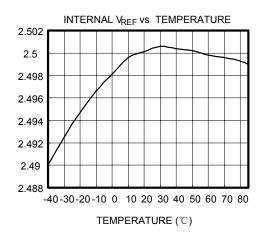

典型的特征曲线

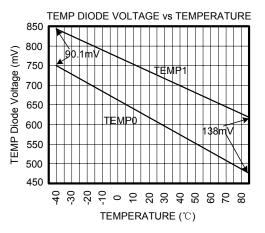

在 T_A=+25℃, +V_{CC}=+2.7V, IOVDD=+1.8V, V_{REF}=2.5V. 12-bit 模式下,PD0=0, f_{SAMPLE}=125kHz, f_{CLK}=16 x f_{SAMPLE} = 2MHz, 除非有特殊说明.










典型的特征曲线

在 T_A=+25℃, +V_{CC}=+2.7V, IOVDD=+1.8V, VREF=2.5V. 12-bit 模式下,PD0=0, f_{SAMPLE}=125kHz, f_{CLK}=16 x f_{SAMPLE} = 2MHz, 除非有特殊说明.

工作原理

HM2056 是一款经典的逐次逼近 A/D 转换器,该结构采用电容按比例缩放的原理,内部集成了采样保持电路。图 3 为HM2056 在触摸屏应用中的连接示意图。HM2056 内部集成了 2.5V 的基准输出,也可以使用低阻抗的外部电源,电压范围在 1V 至+V_{CC} 之间,基准电压的大小决定了转换器的输入范围。模拟输入(X, Y,Z-Position,附加输入,电池电压以及片上温度)是HM2056 中的多通道选择器连接到 A/D 转换器的输入端。

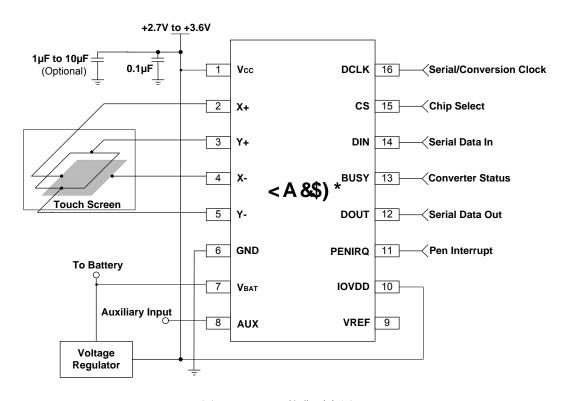


图 3 < A & \$) * 的典型应用

模拟输入

图 4 描述了多通道选择器在 A/D 输入端和参考电压端的结构。表 1 描述了控制字 A2, A1, A0, 和 SER/DFR 与HM2056 多通道选择器之间的关系,控制字通过 DIN 引脚连续传输。

当 A/D 转换器进入采样阶段,输入端+IN 和-IN 之间的电压差被采集并存储到内部的电容阵列上。 采集输入信号的时间取决于 25pF 内部电容的充电速度,输入信号源的阻抗越大,采样时间就越长。 采样时间(t_{ACQ})的计算公式如下:

$$t_{\text{ACQ}} = 8.4 \times (\text{R}_{\text{IN}} + \text{R}_{\text{S}}) \times 25 \text{pF}$$

这里的 R_{IN} 是输入信号源的阻抗, R_S 和 25pF 是输入端的等效 RC。由于模拟输入信号源的阻抗不同,需要不同的采样时间,HM2056 默认采用 3 个时钟周期作为输入信号的采样时间。

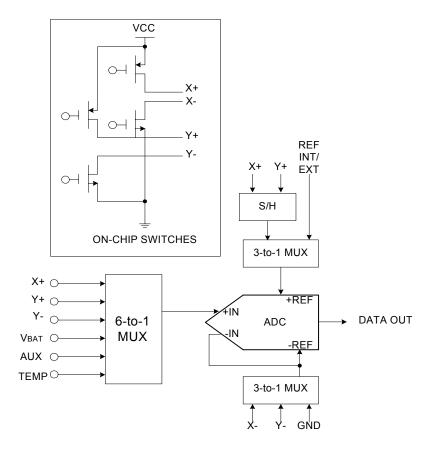


图 4 模拟输入的等效电路

SER / DFR	A2	A 1	A0	测量	模拟输入	X 开关	Y开关	+REF	-REF
1	0	0	0	TEMP0	TEMP0	OFF	OFF	V_{REF}	GND
1	0	0	1	Y-POSITION	X+	OFF	ON	V_{REF}	GND
1	0	1	0	VBAT	VBAT	OFF	OFF	V_{REF}	GND
1	0	1	1	Z1-POSITION	X+	X+ OFF X- ON	Y+ ON Y- OFF	V_{REF}	GND
1	1	0	0	Z2-POSITION	Y-	X+ OFF X- ON	Y+ ON Y- OFF	V_{REF}	GND
1	1	0	1	X-POSITION	Y+	ON	OFF	V_{REF}	GND
1	1	1	0	AUX	AUX	OFF	OFF	V_{REF}	GND
1	1	1	1	TEMP1	TEMP1	OFF	OFF	V_{REF}	GND
0	0	0	1	Y-POSITION	X+	OFF	ON	Y+	Y-
0	0	1	1	Z1-POSITION	X+	X+ OFF X- ON	Y+ ON Y- OFF	Y+	X-
0	1	0	0	Z2-POSITION	Y-	X+ OFF X- ON	Y+ ON Y- OFF	Y+	X-
0	1	0	1	X-POSITION	Y+	ON	OFF	X+	X-

表1 通道选择器与控制字的关系

内部基准

HM2056 内部集成了 2.5V 输出的基准,控制指令 PD1 控制内部基准电压的工作状态(参考表5 和图 5)。在内部基准电路工作时(PD1=1),电源电压 V_{CC}不能小于 2.7V。在典型应用中,内部基准电压仅仅应用在单端模式下,作为电池检测、温度检测和附加输入时 A/D 转换器的参考电压。当作为触摸屏应用时,理想的工作模式为差分模式。所以在芯片上电后,PD1 置为 0 以确保内部基准不工作。

外部基准

当使用外部基准时,必须置 PD1=0,使内部基准电路不工作。如果外部基准源具有高输出阻抗或带有噪声,需在 REF 管脚加 0.1μF 和 10μF 的滤波电容。

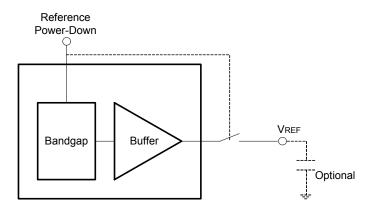


图 5 内部基准电路

模式设置

HM2056 有差分(differential)和单端(single-ended)两种工作模式。这两种模式对 A/D 转换后的精度有一些影响。如果将 A/D 转换器配置为读绝对电压(单端模式)方式,那么驱动管(driver)电压的下降将导致转换输入数据的错误。而如果配置为差分模式,则可以避免上述错误。

当SER/ $\overline{\text{DFR}}$ =1 时,A/D 转换器工作在单端模式下,图 6 为单端模式下测试 Y 轴坐标的等效电路图。如图所示,X+端连接到 A/D 转换器的输入端,Y+以及 Y-端的驱动管导通。电源+V_{CC} 经过 Y 轴到地形成通路,A/D 转换器输入端通过采集 Y 轴的电阻分压值(对应 Y 轴的坐标),经过 A/D 转换成数字信号由 DOUT 端输出。在单端的工作模式下,A/D 转换器的参考电压为+V_{CC},即 -REF 端接地,+REF 端接+V_{CC}。在进行电池检测、温度检测以及附加功能时,+REF 端可以连接内部基准的输出端,或外部基准的输入端(详细的信息参考表 5)。单端工作模式的优点在于,当检测触摸屏坐标的时候,X+、X-、Y+、Y-端的驱动管在 A/D 转换器采样完成后自动断开,可以降低功耗。但是驱动管不是理想的开关管,具有导通电阻,而且屏的电阻会随着触摸屏的材料以及尺寸的变化而变化。一般的屏电阻在 200 Ω 到 900 Ω 之间,HM2056 驱动管的导通电阻近似 5 Ω 。由于导通电阻的存在,使得 A/D 转换器的输出带入额外的飘移误差和增益误差。更严重的一点是,这些误差不仅会随着触摸屏屏材料以及尺寸变化,还会随着工作温度以及电源电压的变化而变化。这就要求在触摸屏应用时,需加入校准程序对数据进行处理。

在差分模式中,加入了采样保持电路,使得HM2056 可以同时满足低功耗和高精度的要求。 差分模式的操作类似于单端模式。加在触摸屏上的电压将成为 A/D 转换器的参考电压,提供一个 度量比操作。这意味着如果加在触摸屏上的电压发生变化(由于电源、驱动电阻、温度或触摸屏电

子等原因),A/D 转换器的度量比操作将对这种变化进行补偿。在HM2056 中, X+/Y+和 X-/Y-端驱动管的导通电阻近似相等。如图 7 所示,在 A/D 转换器采样阶段,采样保持电路开始工作,通过采样电源电压+V_{CC}减去 Y+端 PMOS 管的两倍压差的电压,作为 A/D 转换器的参考电压。并在采样结束后,驱动管自动断开以降低功耗,参考电压由采样保持电路维持其稳定输出。

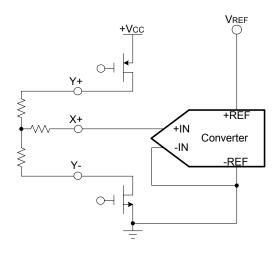


图 6 单端模式 (SER/DFR 为高)

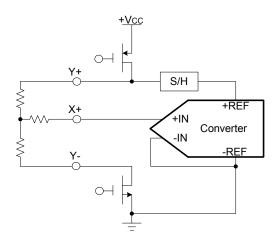


图 7 差分模式 (SER/DFR 为低)

触摸屏充电时间

在触摸屏的两种模式中,HM2056 只有 3 个时钟周期可以从触摸屏上获取(采样)输入模拟电压。因此,为了使HM2056 可以获取正确的电压,输入电压必须在 3 个时钟周期的时间范围内设置好。 但是由于触摸屏顶层和底层之间寄生电容的存在(触摸屏的尺寸越大则寄生电容值也越大),使得在打开驱动管后,触摸屏的电压不能够快速升高到最终值,即触摸屏的充电时间太长。在时钟频率较快,触摸屏寄生电容较大的情况下,3 个时钟周期的采样时间可能不能使输入的模拟电压完全设置好,从而得不到正确的转换数据。解决的办法为,当采样时间不能满足触摸屏的充电时间时,可以用相对较慢的时钟扩展获取时间(3 个周期的采样时间),使得触摸屏电压可以有足够的时间稳定下来。

温度检测

在一些具体的应用中,例如电池充电,用户希望能够知道芯片的工作温度。HM2056 利用二极管 pn 结的正向电压在电流为定值时与温度成反比例的原理,加入了检测温度的功能。如图 8 所示为温度检测的等效电路。HM2056 有两种方法测试芯片的工作温度。第一种方法,用户必须首先知道在温度 T=25℃下,二极管 pn 结 V_{BE} 的电压值,设计人员需要在芯片使用前,通过测试得到具体的电压值。在二极管工作电流一定的情况向, V_{BE} 的温度特性为-2.1mv/℃,通过测试工作时的 V_{BE} ,并与 25℃下的 V_{BE} 对比即可求出芯片的工作温度。该方法在 12bit 模式下的分辨率为 0.3℃ /LSB,但缺点就是必须先测量出室温下的 V_{BE} 值,作为参考值。

第二种方法则不需要知道室温下的 V_{BE} 。该方法利用二极管在不同的电流密度下,其基极-反射极 V_{BE} 的差值与绝对温度成正比例,其电流与电压之间的关系为

$$\Delta V_{BE} = \frac{kT}{q} \times ln(N)$$

其中 k 是玻尔兹曼常数, q 是电子电量, T 是绝对温度, 电流密度的比值 N=89。这种方法相对于第一种方法能够提高精度, 但也相应的降低了分辨率, 该方法的分辨率为 1.6℃/LSB。温度的计算公式为:

0
k = q× $\frac{\Delta V_{BE}}{k \times ln(N)}$

0
C = 2.586×10 3 × Δ V_{BE} - 273 0 k

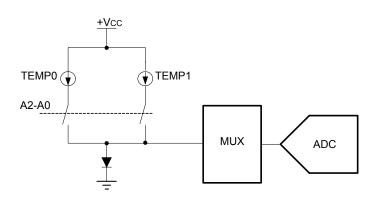


图 8 温度检测的等效电路图

备注:二极管的偏置电流只在 3 个采样时钟周期内打开,加上温度检测的功能并不是经常使用, 所以不会对芯片的系统功耗产生太大的影响。

电池检测

如图 9 所示,HM2056 还增加了一个辅助的工作,即可以对电池电压进行检测,检测电池电压的范围为 0V 到 6V。电池电压经过芯片内部的电阻分压,传到 A/D 转换器输入端的电压为实际电池电压的四分之一。为了降低芯片功耗,电阻分压只在采样阶段工作。

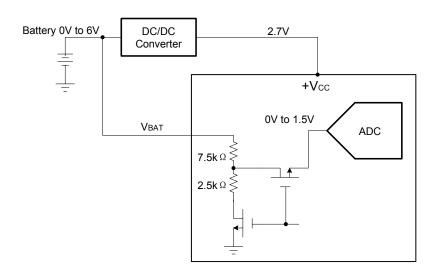


图 9 电池检测的等效电路图

压力检测

HM2056 还提供了检测压力大小的功能,通过检测接触屏的压力大小,来判断笔或者手指是否真正接触了触摸屏。一般来说,测试压力的大小不需要太高的精度,8bit 分辨率的工作模式就满足要求(在这里,我们还是以 12bit 的工作模式来推导计算公式)。HM2056 支持两种测量压力大小的方法。第一种方法需要知道 X 轴方向的屏电阻值,如图 10 所示,通过测试 X 轴坐标,以及 Z1、Z2 坐标来计算压力值,压力的大小由电阻值来量化表示,计算公式如下:

$$R_{\text{TOUCH}} = R_{\text{X-Plate}} \frac{\text{X-Position}}{4096} (\frac{Z_2}{Z_1} - 1)$$

第二种方法需要知道触摸屏 X、Y 轴的电阻值,通过测量 X、Y、Z1 的坐标求出压力的大小,计算公式如下:

$$\mathsf{R}_{\mathsf{TOUCH}} = \mathsf{R}_{\mathsf{X-Plate}} \, \frac{\mathsf{X} - \mathsf{Position}}{4096} (\frac{4096}{\mathsf{Z}_1} - 1) - \mathsf{R}_{\mathsf{Y-Plate}} (1 - \frac{\mathsf{Y} - \mathsf{Positin}}{4096})$$

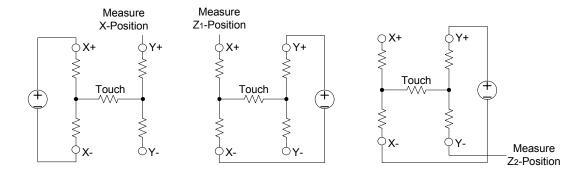


图 10 压力检测的等效电路图

PENIRQ 中断响应

PENIRQ 中断引脚的主要作用是让设计者可以完全控制 HM2056 的低功耗工作模式。图 11 所示是其等效电路图。当电源加入系统且转换器被设置(PD0=0)之后,器件进入低功耗模式。详细的信息参照图 12 以及表 2、表 5。

区间		PENIRQ 描述
Pagion1	PD0=0	不管前一次的模拟输入为什么信号,当触摸屏没有被接触时, PENIRQ 为高,反之 PENIRQ 为低。
Region1	PD0=1	PENIRQ 一直为高。
	PD0=0	不管前一次的模拟输入为什么信号,当触摸屏没有被接触时,PENIRQ 为高,反之PENIRQ 为低。
Region2	PD0=1	不管触摸屏是否被接触,当 A/D 转换器前一次处理的是 X、Y、Z 坐标时,PENIRQ 输出为低,当 A/D 转换器前一次处理的信号为温度、电池或附加功能时,PENIRQ 输出为高。
Pagion?	PD0=0	不管触摸屏是否被接触,当 A/D 转换器处理 X、Y、Z 坐标时, PENIRQ 输出为低,当 A/D 转换器处理温度、电池或辅助功能时, PENIRQ 输出为高。
Region3	PD0=1	不管触摸屏是否被接触,当 A/D 转换器前一次处理的是 X、Y、Z 坐标时,PENIRQ 输出为低,当 A/D 转换器前一次处理的信号为温度、电池或附加功能时,PENIRQ 输出为高。
	PD0=0	不管前一次的模拟输入为什么信号,当触摸屏没有被接触时, PENIRQ 为高,反之 PENIRQ 为低。
Region4	PD0=1	不管触摸屏是否被接触,当 A/D 转换器前一次处理的是 X、Y、Z 坐标时,PENIRQ 输出为低,当 A/D 转换器前一次处理的信号为温度、电池或附加功能时,PENIRQ 输出为高。

表 2 PENIRQ 描述

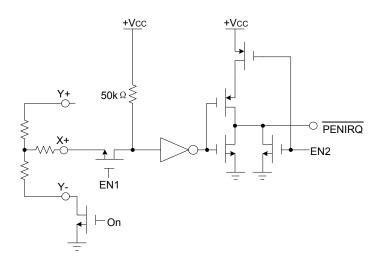


图 11 PENIRQ 等效电路图

控制字及数据传输格式

位

7

6-4

3

2

1-0

名称

S

A2-A0

MODE

SER/DFR

PD1-PD0

HM2056 的控制字如表 3 所示, 其中 S 为数据传输起始标志位, 该位必为"1"。A2~A0 进行通 道选择(见表 1)。MODE 用来选择 A/D 转换的精度, "1"选择 8 位, "0"选择 12 位。SER/DFR 选择参考电压的输入模式(见表1)。PD1 为控制内部基准的工作: PD1=1,内部基准正常工作; PD1=0,内部基准停止工作。PD0选择省电模式:PD0=1,芯片不进入低功耗工作模式;PD0=0, 芯片进入低功耗工作模式(详细描述见表 5)。

完成一次电极电压切换和 A/D 转换,需要先通过串口往 HM2056 发送控制字,转换完成后再 通过串口读出电压转换值。标准的一次转换需要24个时钟周期,如图12所示。由于串口支持双向 同时进行传送, 并且在一次读数与下一次发送控制字之间可以重叠, 所以转换速率可以提高到每次 16 个时钟周期,如图 13 所示。采用 16 个时钟周期可以加快采样率,但会提高软件设计的难度。 如果想要得到更高的采样率且条件允许,即 CPU 可以产生 15 个 CLK 的话(比如 FPGAs 和 ASICs), 转换速率还可以提高到每次15个时钟周期,如图15所示。

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
S	A2	A1	A0	MODE	SER/DFR	PD1	PD0

描述

通道选择控制字,与SER/DFR控制字一起控制多通道选择器的工作模式。(参考表 1)

表 3 < A & \$) * 控制字

启动控制字,为控制字 DIN 的第一个 bit,高有效。

控制 A/D 转换器转换精度,低为 12bit,高为 8bit。

低功耗控制字,详细地描述参考表5。

表 4	控制字的描述

控制单端、差分的工作模式。高为单端模式,低为差分模式。

PD1	PD0	描述
0	0	内部基准不工作。当一次转换周期完成后,A/D 转换器没有接收到下一次的转换指令时,A/D 转换器停止工作,芯片进入低功耗的工作模式。直到接收下一次的控制字,才开始进入另一个转换周期。
0	1	内部基准不工作。芯片不进入低功耗的工作模式,不管有没有接收下一次的控制指令,A/D 转换器一直工作。
1	0	内部基准工作,芯片进入低功耗的工作模式。
1	1	内部基准工作,芯片不进人低功耗的工作模式。

表 5 内部基准以及低功耗工作模式

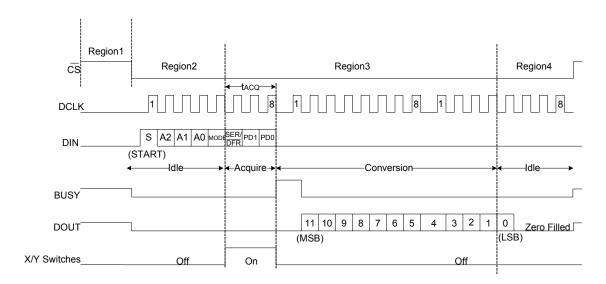


图 12 24 个时钟周期的 A/D 转换时序图

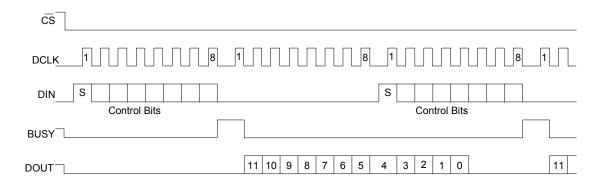


图 13 16 个时钟周期的 A/D 转换时序图

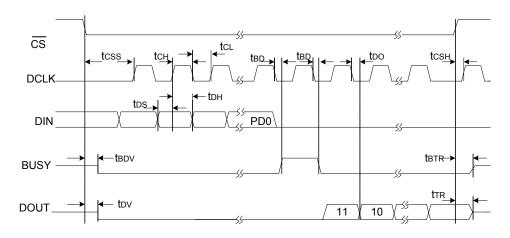


图 14 详细的时序图

		+V _{CC} =2.7V, I	OVDD=1.5V, C	LOAD=50pF	
符号	描述	最小	典型	最大	单位
tacq	采样时间	2			μS
tos	DIN 在 DCLK 的上升延到来前有效时间	100			ns
tон	DIN 在 DCLK 上升延到来后的保持时间	50			ns
t DO	DOUT 在 DCLK 下降延到来后的有效时间			200	ns
t DV	DOUT 相对于 CS 下降延的开启时间			200	ns
tтк	DOUT 相对于 CS 上升延的关断时间			200	ns
tcss	CS 下降延到第一个 DCLK 上升延的延时	100			ns
tсsн	DCLK 无效时间相对于 CS 上升延的时间	10			ns
tсн	DCLK 高电平时间	200			ns
tcL	DCLK 低电平时间	200			ns
t BD	BUSY 相对于 DCLK 下降延的时间			200	ns
t BDV	BUSY 相对于 CS 下降延的开启时间			200	ns
t BTR	BUSY 相对于 CS 上升延的关断时间			200	ns

表 6 时序的电特性

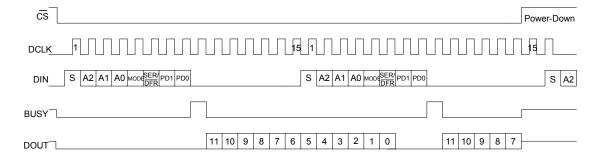
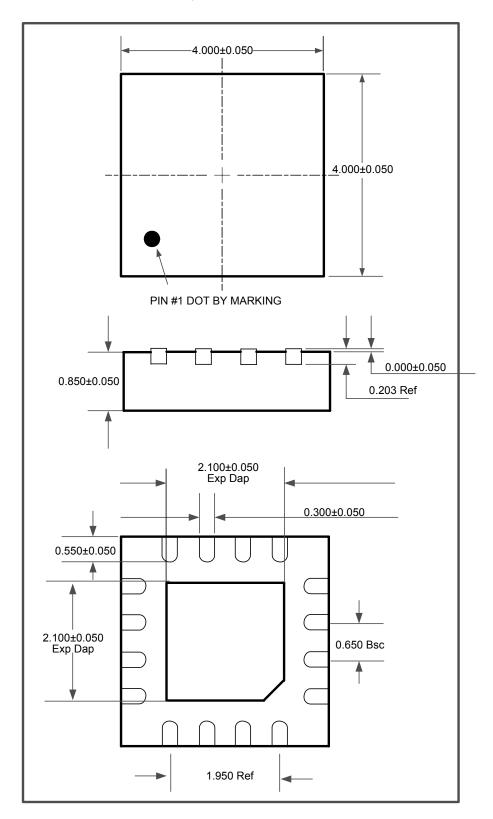
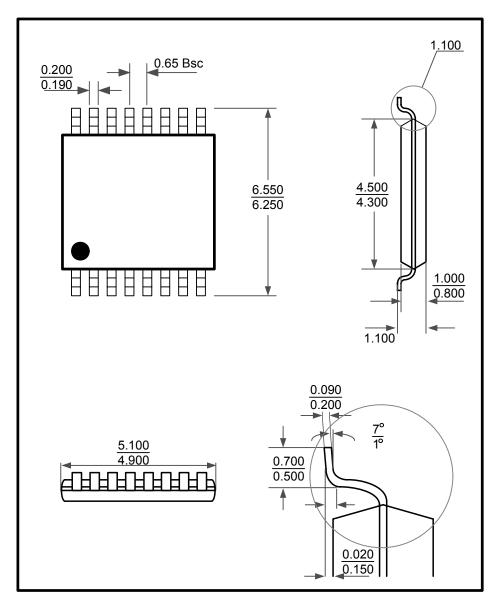



图 15 15 个时钟周期的 A/D 转换时序图



QFN16 PACKAGE

TSSOP16 PACKAGE

备注:单位为毫米。