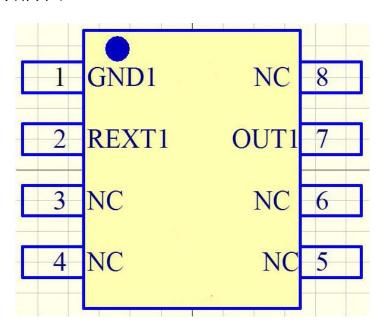


HM7141 规格书

特点

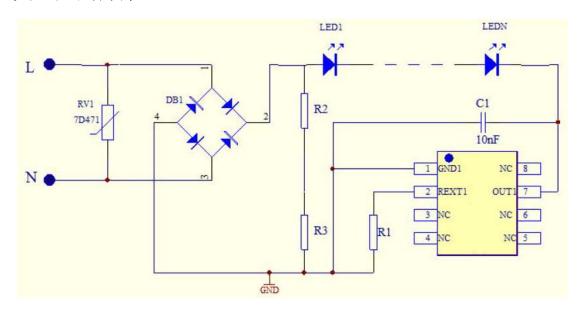
- 输出电流可调 5mA-60mA,
- 无 EMC 问题;
- 芯片与 PCB 可以共用铝基 板;
- ▶ 线路简单,成本低廉;
- 封装: ESOP-8;


应用领域

- 球泡灯
- 日光灯
- 筒灯
- 吸顶灯

概述

HM7141 是一款线性恒流 IC,输出电流可调, 恒流精度可以达到±3%; 恒流精度高,应用方案简单,成本和阻容降压相当, ▶ 具有过温保护功能; 具有过温保护功能,更安全,更可靠。


管脚图

管脚	管脚序号	功能		
GND1	1	芯片1地		
REXT1	2	芯片电流调节端		
NC	3	悬空脚		
NC	4	悬空脚		
OUT	7	芯片电流输出端		
NC	5	悬空脚		
NC	6、8	悬空脚		

典型应用方案

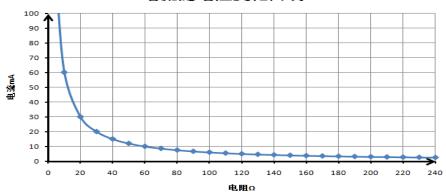
极限参数

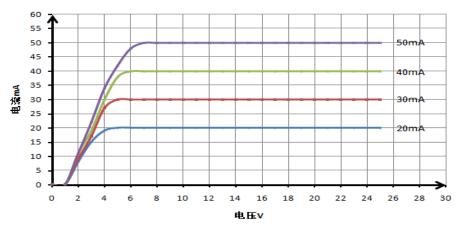
若无特殊说明,环境温度为25℃

特性参数	符号	范围
OUT 端口电压	VOUT	-0.5∼450V
OUT 端口电流	IOUT	5mA∼60mA
工作温度	TOPT	-40°C∼+120°C
存储温度	TSTG	-50°C∼+150°C
ESD 耐压	VESD	2KV

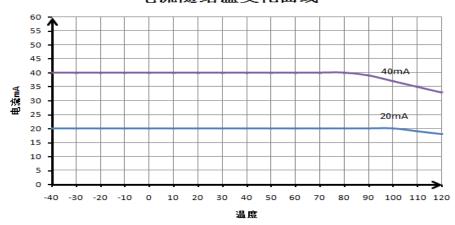
电器工作参数

若无特殊说明,环境温度为25℃

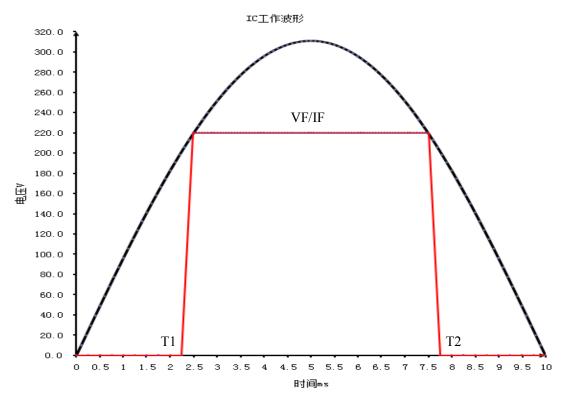

参数	条件	最小值	典型值	最大值	单位
OUT 输入电压	Iout=30mA	6.5	ı	ı	V
OUT 端口耐压	Iout=0	450	1	-	V
输出电流	•	5	1	60	mA
静态电流	Vout=10V REXT 悬空	-	0.15	0.25	mA
REXT 端口电压	Vout=10V	-	0.6	1	V
Iout 误差	I out=5∼60mA		±3%		%
温度补偿点 Tsc	-		110		$^{\circ}$


OUT 端口输出电流特性

HM7141 输出电流计算公式
$$I_{out} = \frac{V_{rext}}{Rs} = \frac{600 \, mV}{Rs} (mA)$$


电流随电阻变化曲线

电流随端口电压变化曲线



电流随结温变化曲线

HM7141理论计算

1、市电的波形函数是一个正弦曲线(如图 2), 表达是如下:

$$u = \sqrt{2}U\sin(2\pi f t + \varphi) \tag{1}$$

其中: U:市电有效值, f: 市电频率, Φ: 初始相位

式1的逆运算可以求出

$$T1 = \arcsin(V_F / \sqrt{2}U) / 2\pi f$$

$$T2 = 1/2 f - \arcsin(V_F / \sqrt{2}U) / 2\pi f$$
(2)

由此可以求出 LED 电流导通时间

$$\Delta T = T2 - T1 \tag{3}$$

2、 灯珠的 V-I 特性曲线:

由式(2)可以看出灯珠的电压 VF 影响 LED 的导通时间,进而影响 LED 的有效电流,如下:

$$V_F = n * V_{IFD} (I_{IFD} = 600 mV / R)$$
 (4)

电阻 R 不同, 流经 LED 的电流就不同, 所呈现的 VF 就不一样, 进而影响 LED 的整体电压 VF

3、LED 功耗计算

LED 电流的有效值计算如下:

$$I_{LED} = I_F * \sqrt{\Delta T / T} \tag{5}$$

LED 电压的有效值如下:

$$V_{LED} = V_F * \sqrt{\Delta T / T} \tag{6}$$

LED 的功耗计算如下:

$$P_{IED} = V_{IED} * I_{IED} = I_F * V_F * (\Delta T / T)$$
 (7)

4、IC 功耗计算

市电的电压和灯珠电压的差是 IC 的工作电压, 其表达式如下:

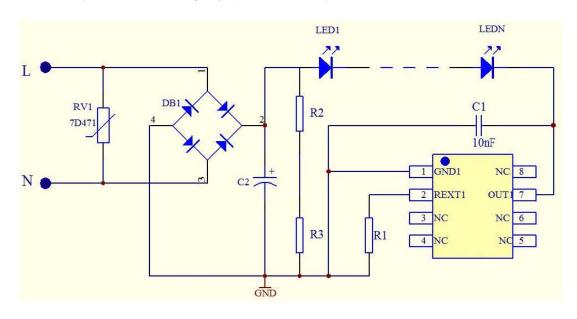
$$u_{1C}(t) = u(t) - V(t) = \sqrt{2} \text{Usin}(2\pi f t) - V(t)$$
 (8)

IC 的功耗是对上式进行积分计算,如下:

$$P_{IC} = \int_{T_1}^{T_2} (\sqrt{2} \text{Usi} n(2\pi f t) - V_F) * I_F dt / T$$
 (9)

5、 电源效率计算

$$\eta = P_{LED} / (P_{LED} + P_{IC} + P_{Batasi})\%$$
(10)


线路的固有损耗是指 IC 的开关损耗,线路损耗,整流桥的损耗等相关损耗 这些值是无法计算的,但是通过对比实验我们可以得出,该损耗近似是个固定值。

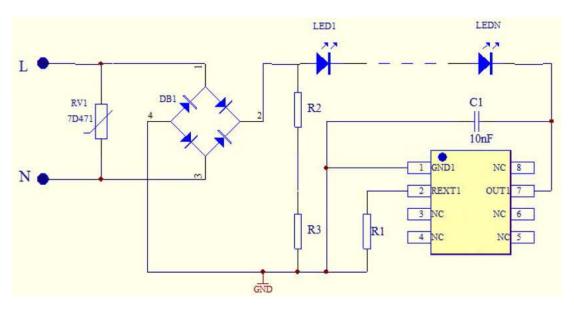
至此,关于HM7141的所有理论计算已经完成,可以将上述公式做成图形用户界面,以此可以模拟出光电模组在不同的灯珠数量,不同的反馈电阻,不同的灯珠类型的情况下功率和电源效率的变化,参考〈HM7141应用设计表格〉。

应用方案实例

1、PF 值 0.5 90%效率无频闪方案

在上述方案中:

输入电压 AC220V 时,设计时 LED 灯珠串联电压控制在 270-290V 之间;

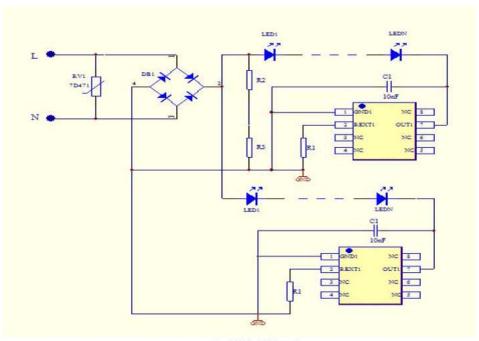

电容 C2 可以对电源滤波,提高电源电压的平均值,从而提高电源效率,但整机的 PF 值只有 0.5 左右;

压敏电阻 RV1、电容 C1 主要起到抗浪涌缓冲作用,避免 IC 瞬间被击穿,提高产品可靠性;

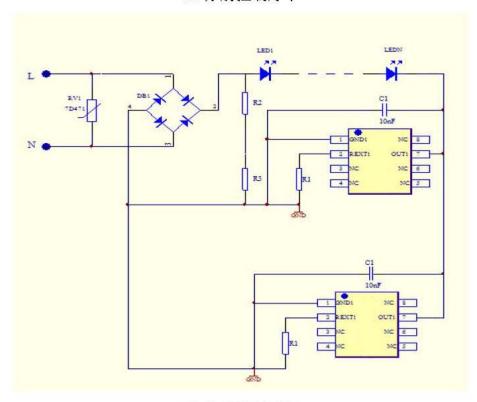
电阻 R3、R4 是放电电阻,电阻 R1、R2 可用于调节 LED 的恒流值,具体计算见 IC 输出电流特性。

2、PF 值 0.9 80%效率 低成本方案

在上述方案中:

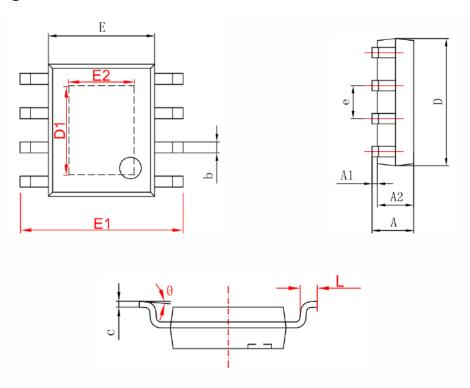

输入电压 AC220V 时,设计时 LED 灯珠串联电压控制在 220-240V 之间,LED 灯串电压低会加大 IC 损耗,降低电源转换效率,此方案线路 PF 值在 0.9 左右;

压敏电阻 RV1、电容 C1 主要起到抗浪涌缓冲作用,避免 IC 瞬间被击穿,提高产品可靠性;


电阻 R3、R4 是放电电阻,电阻 R1、R2 可用于调节 LED 的恒流值,具体计算见 IC 输出电流特性。

3、IC扩展应用方案

IC 分别控制灯串



IC 并联控制灯串

封装形式

ESOP-8

	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
Α	1.350	1.750	0.053	0.069
A1	0.050	0.150	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
D1	3.202	3.402	0.126	0.134
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
E2	2.313	2.513	0.091	0.099
е	1.270(BSC)		0.050(BSC)	
L	0.400	1.270	0.016	0.050
Θ	0°	8°	0°	8°