

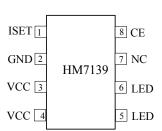
高亮度发光二极管(LED)驱动集成电路 J O 935;

概述:

HM7139是一款电流调制集成电路,恒定输出电流可达1.5A,可以用来驱动包括白色发光二极管在内的各类发光二极管。HM7139的LED端电流通过一个外部的电阻设置,电流范围为30mA到1.5A。芯片内部集成有功率晶体管,大大减少了外部元器件的数目。其它功能包括芯片温度调制,芯片使能输入端等。

HM7139具有外围元器件少,使用方便,可实现多种模式调光,效率高等优点,非常适合便携式产品的应用。

HM7139采用散热能力增强型的8管脚SOP8封装。


特点:

- 工作电压范围: 2.8V 到 6V
- 芯片内部集成有功率晶体管
- 低压差: 0.35V@1.5A
- LED 管脚输出电流可达 1.5A
- 输出电流精度: ±5%
- 芯片温度调制功能
- 工作环境温度范围: -40℃到85℃
- 采用 8 管脚的 SOP8 封装
- 产品无铅,满足rohs指令要求,无卤素

应用:

- 手电筒
- 高亮度发光二极管(LED)驱动
- 发光二极管(LED)头灯
- 应急灯及照明灯具

管脚排列图:

典型应用电路:

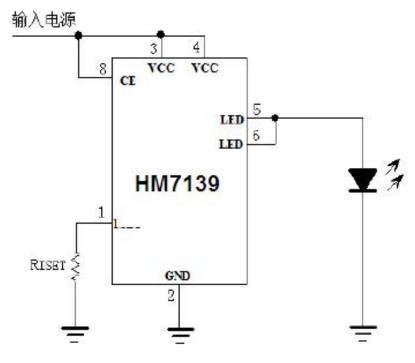


图 1 典型应用电路

订购信息:

器件型号	封装形式	包装	工作环境温度
HM7139	SOP8	盘装,每盘 2500PCS	- 40℃ 到 85℃

功能框图:

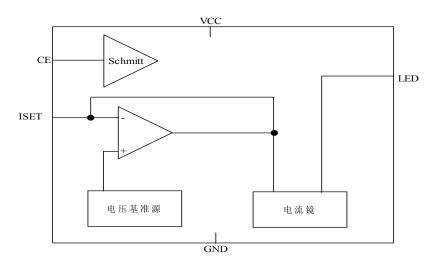


图 2 功能框图

管脚描述:

序号.	名称	功能描述		
		LED电流设置端。LED电流设置是通过在ISET管脚和地之间连接一个电阻		
		R _{ISET} 实现的,计算电流的公式如下:		
		$I_{LED} = 1800V / R_{ISET}$		
1	ISET	其中, I _{LED} 的单位是安培(A)		
		R _{ISET} 的单位是欧姆(Ω)。		
		通常情况下,在ISET管脚没有外加电容时,在此管脚可以接一个阻值最大		
		为30K的电阻。		
2	GND	电源地		
	VCC	电源正极连接端。 内部电路的工作电源。为了保证HM7139能够正常工作,		
3, 4		VCC管脚的电压应该在2.8V和6V之间,并且要大于LED正向导通电压加上		
		HM7139的VCC管脚与LED管脚之间所需要的压降。		
5, 6	LED	发光二极管(LED)正极连接端。发光二极管的正极连接在此管脚,负极连		
		接到地,LED电流从此管脚流出。		
7	NC	没有连接。		
8	CE	芯片使能输入端。输入高电平使HM7139处于正常工作状态;输入低电平使		
		HM7139处于禁止工作状态。CE管脚可以被TTL电平或者CMOS电平驱动。		
9	散热片	接地。		

极限参数

管脚电压0.3V to 6.5V	最大结温150℃
工作温度范围40℃ to 85℃	存储温度65℃ to 150℃
管芯到管壳热阻30℃/W	焊接温度260℃

超出以上所列的极限参数可能造成器件的永久损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

电气参数:

(VCC=3.7V, T_A=25℃, 除非另有说明)

参数	符号	测试条件	最小	典型	最大	单位	
输入电压范围	VCC		2.8		6	伏特	
工作电流	I _{VCC1}	$R_{ISET}=1.8k \Omega$, $I_{LED}=0A$		175		微安	
禁止工作电流	I _{VCC2}	V _{CE} =0V			1	微安	
LED管脚流出电流	I_{LED1}	$R_{ISET}=1.8k \Omega$	0.95	1	1.05	安培	
LED管脚电流精度			-5		+5	%	
		$I_{LED}=100$ mA \times 95%		30		・ 毫伏	
	$ m V_{DROP}$	I_{LED} =350mA×95%		85			
LED管脚电压差		I_{LED} =500mA×95%		120			
LED目腳电压左		I_{LED} =900mA×95%		230			
		$I_{LED}=1.2A\times95\%$		310			
		$I_{\text{LED}}=1.5\text{A}\times95\%$		370			
CE输入低电平	V_{CEL}	CE电压下降			0.6	V	
CE输入高电平	V _{CEH}	CE电压上升	2.0			V	
CE输入电流	I _{CEL}	CE=GND, V _{IN} =6V	-1			4	
CE相八电机	I _{CEH}	CE=VIN=6V			1	uA	

详细描述:

HM7139是用于驱动高亮度发光二极管 (LED)的电流调制集成电路,输出电流由外部电阻设置,最大输出电流可达1.5安培。

当CE管脚为高电平,HM7139输入电压大于2.8V,并且大于LED正向导通电压加上所需的压差时,HM7139 正常工作,从LED管脚输出恒定电流。

当由于环境温度过高,散热不良或者输入输出压差过大而导致HM7139的结温达到135℃时,HM7139芯片内部的功率管理单元自动降低LED管脚的输出电流,使得芯片的温度不再上升。这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片。在温度调制状态,虽然LED电流变小,但是LED仍然有持续电流通过,LED不会被关断。这是热调制功能同热保护功能的最大不同。

应用信息:

设置LED管脚的输出电流

HM7139用一个连接在ISET管脚到地之间的电阻R_{ISET}来设置强光状态LED管脚的电流,该电流的计算公式如下:

 $I_{LED} = 1800 \text{V} / R_{ISET}$

其中, I_{LED}是流出LED管脚的电流,单位是安培(A)

 R_{ISET} 是ISET管脚到地之间的电阻值,单位是欧姆(Ω)

例如,如果要使流出LED管脚的电流为1A,则:

 $R_{ISET} = 1800V/1A = 1.8k \Omega$

为了保证良好的稳定性和温度特性,R_{ISET}建议使用精度为1%的金属膜电阻,功率为1/10瓦即可。通常情况下,在ISET管脚没有外加电容时,在此管脚可以接一个阻值最大为30K的电阻。

芯片消耗功率的考虑

HM7139 所允许的最大功耗由下式所示:

 $P_{Dmax} = (T_J - T_A)/\theta_{JA}$

其中, PDmax 是HM7139 所允许的最大功耗

T₁是HM7139的最大结温,由于过温保护电路的作用,T₁=135℃

T_A是HM7139工作的环境温度

 θ_{JA} 是HM7139 所采用的封装的热阻,在没有散热措施没有空气流动时约为 90 C/W;在有散热措施的情况下, θ_{JA} 会大幅度减小,所以为了得到最大的 LED 电流,在设计 PCB时要充分考虑散热问题。

HM7139 的真实功耗由下式所示:

 $P_{Dact} = (VCC - V_{LED}) \times I_{LED}$

其中, P_{Dact}是HM7139的真实功耗

V_{LED} 是正常工作时 VCC 对HM7139 LED 管脚的电压

ILED 是设计的流出 LED 管脚的电流

为了使HM7139 正常工作, PDact 必须小于 PDmax

多个发光二极管(LED)并联

HM7139 可以实现多个发光二极管的并联,如图 3 所示的电路。

为了使总电流在多个 LED 之间均匀分配,可以同每个 LED 串联一个小电阻。

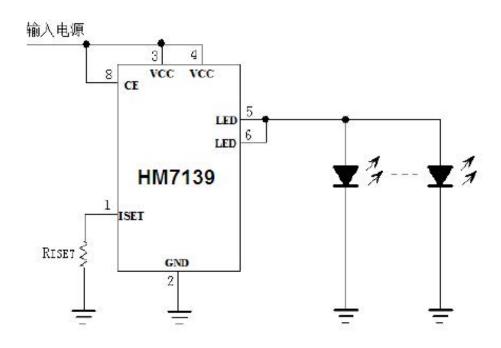


图 3 HM7139 驱动并联发光二极管(LED)

亮度控制

有三个方法可以调整LED的亮度:

1. 用芯片使能端(CE)

在芯片使能端施加PWM信号,当PWM信号为高电平时,HM7139正常工作,LED发光;当PWM信号为低电平时,HM7139被禁止工作,LED也被关断。PWM信号的频率应该小于20KHz。

2. 用逻辑信号调整发光二极管的亮度,如图4所示

如果只需要分几档来调整发光二极管的电流,可以用逻辑信号来实现,图4示出了分两个档次来调整发光二极管的电流的电路。 R_{ISET1} 设置了流经LED管脚的最小电流,当N沟道场效应晶体管导通时,即逻辑信号为高电平时, R_{ISET2} 同 R_{ISET1} 并联,LED电流增大。

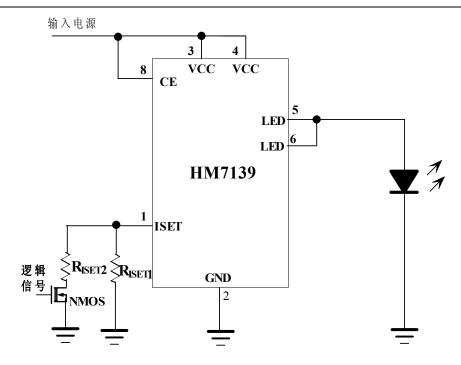


图4 用逻辑信号调整亮度

3. 用可变电阻调整发光二极管的亮度,如图5所示

用一个可变电阻可以连续调整发光二极管的亮度,如图5所示。 R_{ISET1} 设置了流经LED管脚的最大电流, R_{ISET2} 为可变电阻,改变 R_{ISET2} 的电阻值就可以连续改变发光二极管的亮度。

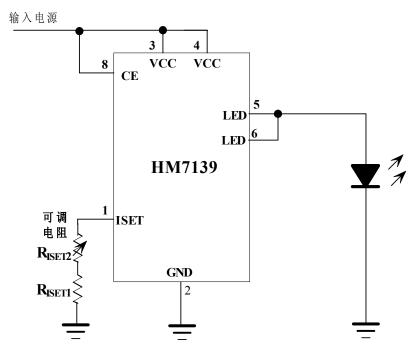


图5 用可变电阻调整发光二极管的亮度

稳定性

通常情况下,在ISET管脚没有外加电容时,在此管脚可以接一个阻值最大为30K的电阻。如果在ISET管脚有外接的电容,则在此管脚允许外接的电阻值会减小。为了保证电流回路的稳定性,ISET管脚外接电阻,电容所形成的极点应高于300KHz。假设ISET管脚外接电容C,用下面的公式可以计算ISET管脚允许外接的最大电阻值:

$$R_{ISET} < 1 / (6.28 \times 3 \times 10^5 \times C)$$

为了在ISET管脚监测LED电流,或者隔离ISET管脚的电容负载,可以用一个RC滤波电路,如图6所示,这样电流回路的稳定性不受影响。

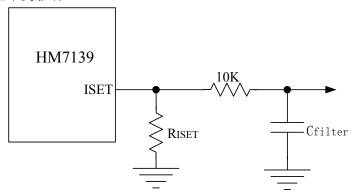
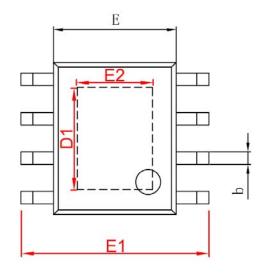
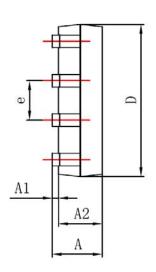
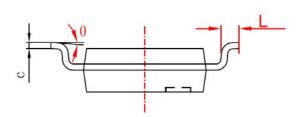


图 6 隔离 ISET 管脚的电容负载


PCB设计注意事项


一个散热性能良好的 PCB 对 LED 电流很关键。集成电路产生的热通过封装的金属引线框管脚散到外面,PCB 上的铜层起着散热片的作用,所以每个管脚(尤其是 LED 管脚和 GND 管脚)的铜层的面积应尽可能大,多放些通孔也能提高热处理能力。在系统内除了HM7139 以外的热源也会影响 LED 管脚的电流,在做系统布局时也要给以充分考虑。


第 2 管脚 ISET 的电流设置电阻要尽可能靠近HM7139,并且要使第 2 管脚 ISET 的分布电容尽量小。 为了能够得到最大的 LED 电流,要求将HM7139 背面裸露的金属板焊接到印刷线路板的地端的铜线上,以达到最大的散热性能。否则,芯片的热阻将增大,导致 LED 电流减小。

封装信息

字符	Dimensions In	Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0.069	
A1	0. 050	0.150	0.004	0. 010	
A2	1. 350	1. 550	0.053	0. 061	
b	0. 330	0.510	0.013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
D1	3. 202	3. 402	0. 126	0. 134	
E	3. 800	4.000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0.091	0. 099	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	