

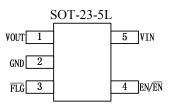
80mΩ, 1.5A/1A/0.8A/0.5A 带标志的高边电源开关

概述

HM9715是一款低压单片N-MOSFET高边电源开关,非常适用于自供电和总线供电的USB应用。HM9715配备一个电荷泵电路来驱动内部MOSFET开关;80mΩ低导通电阻满足USB压降要求;FLAG引脚输出可显示故障状态给本地USB控制器。

附加特性还包括软启动来限制插拔时的浪涌电流,过热关断保护可避免来自高电流负载的灾难性开关故障,欠压锁定用来确保设备锁定在关闭状态,除非当前有一个有效的输入电压出现。最大电流分别通过开关HM9715/A/B/C/D限制在2.1A/1.5A/1A/0.65A典型值,25uA的低静态电流使该设备成为便携式供电设备的理想选择。

HM9715适用于SOT-23-5L封装,仅需要极小的电路板空间和极少的外围器件。


应用

- USB总线/自供电集线器
- USB周边
- ACPI配电系统
- PC卡热插拔
- 笔记本电脑, 主板电脑
- 电池供电设备
- 热插拔电源
- 电池充电器电路

特性

- 符合USB规范
- 宽输入电压范围: 2.5V至5.5V
- 典型RDS(ON): 80mΩ
- 典型值1.7V欠压锁定
- 输出可强制高于输入(关断状态)
- 低供电电流: 开启状态下典型值25uA 关断状态下典型值1uA
- 保证HM9715/B/C/D分别提供1.5A/1A/0.8A/0.5A 的连续负载电流
- 开漏故障标志输出
- 热插拔应用(软启动)
- 电流限制保护
- 过热关断保护
- 反向电流阻断 (无寄生二极管)

封装

典型应用电路图

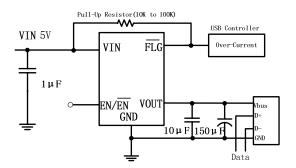


图1 典型应用电路

引脚描述

引脚序号	引脚名称	引脚功能
1	VOUT	输出电压。
2	GND	电源地。
3	FLG	开漏故障标志输出。
4	EN	芯片使能。两个版本,高有效和低有效。
5	VIN	电源输入电压。

功能框图

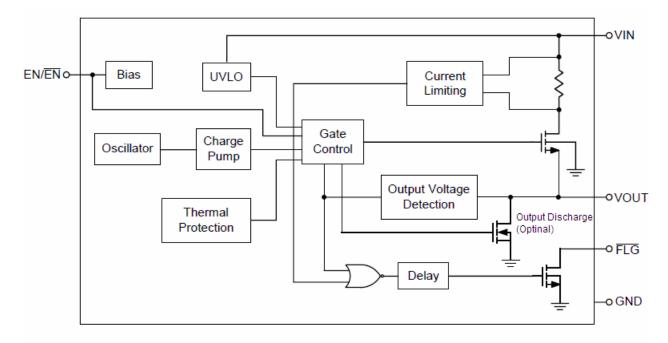


图 2 功能框图 (输出放电通道不适应于HM9715□□K)

最大绝对额定值 (性1)

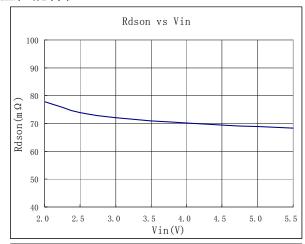
输入电压	6.0V
使能电压	0.3V ~ 6.0V
标志电压	6.0V
功耗, P _D @ T _A = 25°C	
SOT-23-5L	0.4W
封装热阻 (柱2)	
SOT-23-5L, θ_{JA}	250°C/W
结温 ^(建3)	125°C
引脚温度 (焊接, 10s.)	260°C
储存温度范围	65°C ~ 150°C

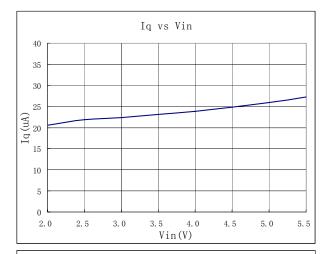
ESD敏感度

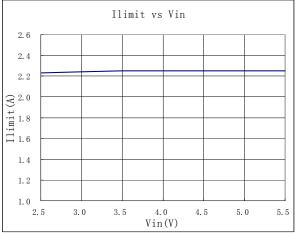
电气特性(性4)

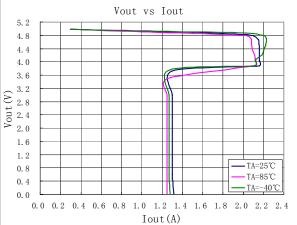
(Vin=5V,Cin=Cout=1uF,T_A=25℃,除非另有说明)

参数		条件	最小值	典型值	最大值	单 位
输入电压			2.5		5.5	V
导通电阻	HM9715A	$V_{IN} = 5V$, $I_{OUT} = 1A$		80	100	mΩ
	HM9715B	$V_{IN} = 5V, I_{OUT} = 0.5A$		80	100	mΩ
	HM9715C	$V_{IN} = 5V$, $I_{OUT} = 0.5A$		80	100	mΩ
	HM9715D	$V_{IN} = 5V, I_{OUT} = 0.5A$		80	100	mΩ
输入电流		开关管打开, V _{OUT} = OPEN		25	45	μΑ
		开关管关闭, V _{OUT} = OPEN		0. 1	1	μΑ
		逻辑低电压, V _{IN} = 2.5V ~5.5V			0.8	V
EN / EN 阈值		逻辑高电压, V _{IN} = 2.5V ~5.5V	2.0			V
EN/EN 输入电流		$V_{\rm EN}/_{\overline{EN}} = 0 \sim 5.5 V$		0.01		μΑ
输出漏电流		$V_{EN} = 0V$, $V_{\overline{EN}} = 5V$, $R_{LOAD} = 0\Omega$		0.5	10	μΑ
输出开启上升时间		输出电压的 10%上升到 90%		400		us
	HM9715A		1.78	2.1	2.42	A
阳汰	HM9715B	<i>松</i> 山山水 海 (2014)	1.27	1.5	1.73	
限流	HM9715C	输出电流递增 (<0.1A/ms)	0.85	1	1.15	
	HM9715D		0.52	0.65	0.78	
	HM9715A			1.3		- A
	HM9715B	V _{OUT} =0V,在热关断时测量		0.8		
短路折回电流	HM9715C			0.6		
HM97				0.4		
FLAG 输出电阻		I _{SINK} =1mA		20	400	Ω
FLAG 关断电流		V _{FLG} =5V		0.01	1	μΑ
FLAG 延迟时间		从故障条件到FLG 维持时间	5	12	20	ms
关断拉低电阻		V _{EN} =0V, V _{EN} =5V (不适应于 PJ9715□□K)		75	150	Ω

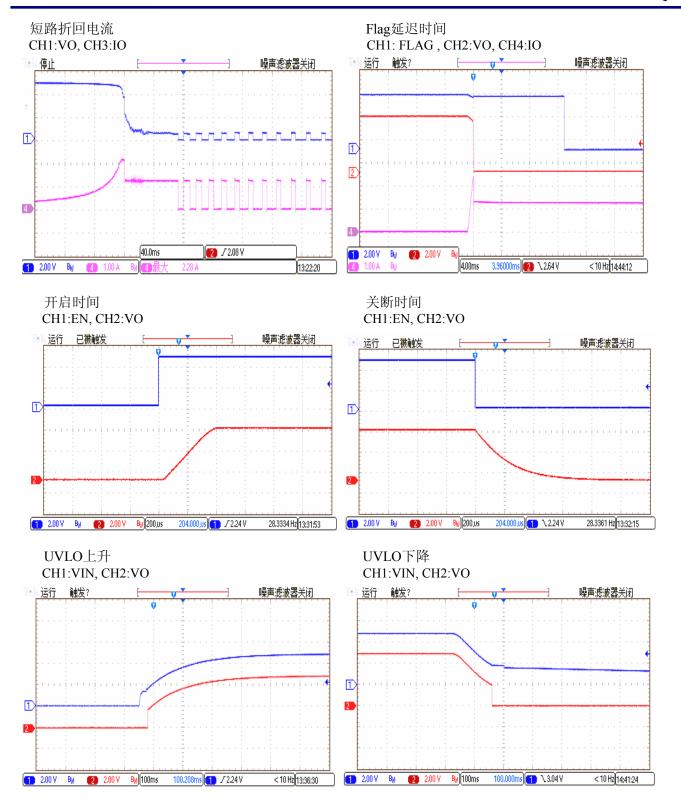





欠压锁定	V _{IN} 上升	1.3	1.7	V
欠压迟滞	V _{IN} 下降		0.1	V
热关断保护			130	°C
热关断迟滞			20	°C


- 注 1: 绝对最大额定值是指超过该值则器件的耐用性有可能受损。
- 注 2: 热阻近似地以基于1平方英寸含1盎司铜测算。
- 注 3: TJ 根据以下公式由环境温度 TA 和功耗 PD 计算而得。
- 注 4:100%产品在+25℃ 时测试,在工作温度范围内的规格,由设计和工艺原理提供保证。

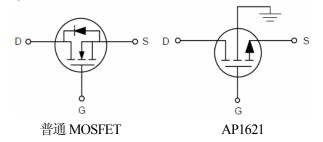
典型性能特征



订货信息

订购代码	标记	封装	描述
HM9715AMR	PAXY ¹ P	SOT-23-5L	2.1A 限流,高有效
HM9715BMR	PBXY ¹ P	SOT-23-5L	1.5A 限流,高有效
HM9715CMR	PCXYP	SOT-23-5L	1A 限流,高有效
HM9715DMR	PDXY ¹ P	SOT-23-5L	0.65A 限流,高有效

1.XY=日期代码 P=封装厂


应用信息

HM9715是一款单片N-MOSFET高边电源开关,非常适用于自供电和总线供电的USB应用。AP1621配备一个电荷泵电路来驱动内部MOSFET开关;80mΩ低导通电阻满足USB压降要求;FLAG引脚输出可显示故障状态给本地USB控制器。

输入和输出

输入是连接到内部电路和 MOSFET 漏极的电源。输出是 MOSFET 源极。在典型应用中,电流通过开关管从输入流向输出负载。输出 VOUT 大于 VIN,由于 MOSFET 是双向的,电流会从 VOUT 流向 VIN。

不同于普通的MOSFET,有一种MOSFET的漏极和源极之间没有寄生二极管,当输出被关掉,VIN大于VOUT时,HM9715 可以防止反向电流($V_{EN} < 0.8V$ 或 $V_{Ev} > 2V$)。

使能

当 EN/EN 引脚是逻辑高/低时,开关关闭。在这个条件下,内部电路和 MOSFET 会关断,输入电流减小到 0.1uA 典型值。EN/EN 悬空会引起未知操作。EN 不允许对地接负压。EN/EN 引脚应直接接到 VIN(GND)以确保开启。

欠压锁定

欠压锁定阻止 MOSFET 开关打开直到输入电压超过大约 1.7V。如果输入电压降到大约 1.6V,欠压锁定关闭 MOSFET 开关,FLG 也相应出现。欠压检测功能仅用于开关打开时。

软启动热插件的应用

为了消除热插件应用中较大浪涌电流引起的电压下跌,软启动特性能有效隔离来自大电容负载的电源,以满足 USB 压降要求。

故障标志

HM9715 提供一个 N 沟道开漏 MOSFET 输出的FLG 信号引脚。当 VOUT < VIN - 1V,限流或晶圆温度超过大约 130°C 时,此引脚变为低电平。FLG 输出能够吸收 10mA 电流达到 200mV 典型值。FLG 引脚要求用一个上拉电阻,这个电阻值应足够大以减少能量损耗。一个 100kΩ 的上拉电阻足够大多数应用。在过流情况下,FLG 延迟一段时间之后响应。这是为了确保FLG 是在过流情况下出现,以防止误操作。

限流和短路保护

限流电路防止 MOSFET 开关损坏并可以通过HM9715A/B/C/D开关驱动接近2.1A/1.5A/1A/0.65A 典型限流值的负载电流。当一个重负载或短路被应用于开关时,一个大的瞬态电流流过直到限流电路响应。一旦超过这个电流限制阈值,芯片进入恒流模式直到产生热关断或故障被移除。

热关断

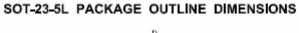
采用热关断电路是为了防止晶圆温度超过大约 130℃时使芯片受损。当使能有效,晶圆温度降低 20℃时,开关会自动重启。输出和FLG 信号也将继续循环开关直到芯片使能失效或故障被移除。

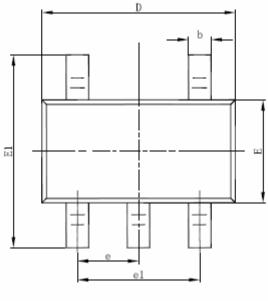
输入电容

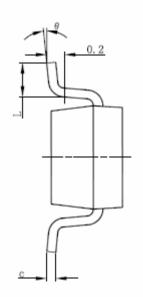
输入和地之间接一个 luF 的低 ESR 陶瓷电容,以防止在热插件应用时输入电压下跌。但是,较大电容值会进一步减小输入压降。此外,没有旁路电容,输出短路会引起输入振铃而损坏内部控制电路。即使是短路期间,输入瞬态也不能超过最大绝对额定值 6.0V。

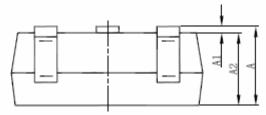
输出电容

为了满足 hub 总线电源最大下降 330mV 的要求(每个 USB2.0 输出端口必须有一个 120uF 的低 ESR 的大电容),150uF 低 ESR 的电解电容或者钽电容。采用要求的旁路方式,减小旁路电容和下游连接间的寄生电感和电阻,减小 EMI 以及下游连接热插拔造成的电压下降. 在总线电源,地线以及与电源连接管脚上的 0.1uF的旁路电容上串接磁珠,减小 EMI,增强 ESD 保护.旁路电容的耗散因数要低保证高频段的去藕。


布局建议


为了体现 HM9715 的最好性能,必须严格按照下面的布局建议:


- 1. 输入输出电容必须靠近 IC 并连接到平面以减少噪声耦合。
- 2. 地应该连接到一个强大的地平面以确保热耗散。
- 3. 保持主电流走线尽可能的短而粗。



封装信息

Sumbol	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°