HM6283

Features

- n Wide 3.6V to 24V Input Voltage Range
- n 0.22V FB adjustable LED drive current
- n Directly drive 6 Series 1W LED at VIN>=12V
- n Fixed 400KHz Switching Frequency
- n Max. 2A Switching Current Capability
- **n** Up to 92% efficiency
- n Excellent line and load regulation
- n EN PIN TTL shutdown capability & With PWM Dimming Function
- n Internal Optimize Power MOSFET
- n Built in Soft-Start Function
- **n** Built in Frequency Compensation
- n Built in Thermal Shutdown Function
- n Built in Current Limit Function
- n Available in SOP8 package

General Description

The HM6283 regulator is fixed frequency PWM Boost (step-up) LED constant current driver, capable of driving Series 1W LED units with excellent line and load regulation. The regulator is simple to use because it includes internal frequency compensation and a fixed-frequency oscillator so that it requires a minimum number of external components to work.

The HM6283 could directly drive 6 Series 1W LED units at VIN>12V.

The PWM control circuit is able to adjust the duty ratio linearly from 0 to 95%. An enable function, an over current protection function is built inside. An internal compensation block is built in to minimize external component count.

Applications

- n LED Lighting
- **n** Boost constant current driver
- n Monitor LED Backlighting
- n 7' to 15' LCD Panels

SOIC-8

Figure 1. Package Type of HM6283

Pin Configurations

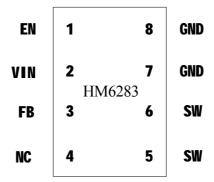


Figure 2. Pin Configuration of HM6283 (Top View)

Table 1 Pin Description

Pin Number	Pin Name	Description
1	EN	Enable Pin. Drive EN pin low to turn off the device, drive it
1		high to turn it on. Floating is default high.
	VIN	Supply Voltage Input Pin. HM6283 operates from a 3.6V to 24V
2		DC voltage. Bypass Vin to GND with a suitably large capacitor
		to eliminate noise on the input.
3	FB	Feedback Pin (FB). The feedback threshold voltage is 0.22V.
4	NC	No Connected.
5,6	SW	Power Switch Output Pin (SW). Output is the switch node that
		supplies power to the output.
7,8	GND	Ground Pin.

Function Block

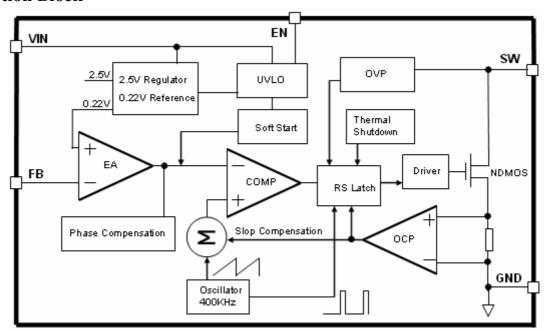


Figure 3. Function Block Diagram of HM6283

Typical Application Circuit

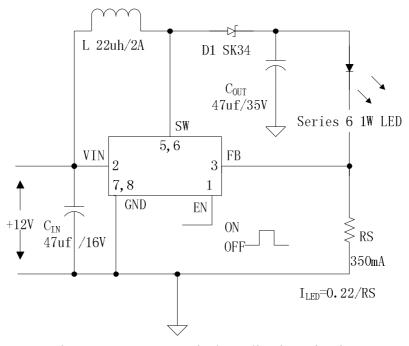


Figure 4. HM6283 Typical Application Circuit

HM6283

Ordering Information

		Part Number	Marking ID	Packing Type	
Package	Temperature	Lead Free	Lead Free	Tacking Type	
1 ackage	Range	HM6283	HM6283	Tube	
		HM6283	HM6283	Tape & Reel	

Absolute Maximum Ratings (Note1)

Parameter	Symbol	Value	Unit
Input Voltage	Vin	-0.3 to 26	V
Feedback Pin Voltage	V_{FB}	-0.3 to Vin	V
EN Pin Voltage	V _{EN}	V _{EN} -0.3 to Vin	
Output Switch Pin Voltage	V_{Output}	-0.3 to 60	V
Power Dissipation	P_{D}	Internally limited	mW
Thermal Resistance (SOP8)	n	100	°C/W
(Junction to Ambient, No Heatsink, Free Air)	R_{JA}	100	C/ VV
Operating Junction Temperature	$T_{\rm J}$	-40 to 125	°C
Storage Temperature	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	T_{LEAD}	260	°C
ESD (HBM)		>2000	V

Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

HM6283

HM6283 Electrical Characteristics

 $T_a = 25$ °C; unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
System parameters test circuit figure4						
VFB	Feedback Voltage	Vin = 5V to 12V, Vout=24V Iload=100mA	209	220	231	mV
Efficiency	ŋ	Vin=12V ,Vout=24V Iout=0.3A	- 92		-	%

Electrical Characteristics (DC Parameters)

Vin = 12V, GND=0V, Vin & GND parallel connect a 100uf/50V capacitor; Iout=100mA, $T_a = 25 \,^{\circ}\text{C}$; the others floating unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Input operation voltage	Vin		3.6		24	V
Shutdown Supply Current	I_{STBY}	$V_{EN}=0V$		70	100	uA
Quiescent Supply Current	I_q	$V_{EN} = 2V,$ $V_{FB} = Vin$		2.5	5	mA
Oscillator Frequency	Fosc		320	400	480	Khz
Switch Current Limit	I_{L}	V _{FB} =0		2		A
Output Power NMOS	Rdson	Vin=12V, I _{SW} =2A		110	120	mohm
EN Pin Threshold	V _{EN}	High (Regulator ON) Low (Regulator OFF)		1.4 0.8		V
EN Pin Input Leakage	I_{H}	$V_{EN} = 2V (ON)$		3	10	uA
Current	I_L	V _{EN} =0V (OFF)		3	10	uA
Max. Duty Cycle	D_{MAX}	$V_{FB}=0V$		90		%

Schottky Diode Selection Table

Current	Surface	Through	VR (The same as system maximum input voltage)				
	Mount	Hole					
			20V	30V	40V	50V	60V
1A		√	1N5817	1N5818	1N5819		
	l .	I	l	I	l .		
3A		√	1N5820	1N5821	1N5822		
		√	MBR320	MBR330	MBR340	MBR350	MBR360
	√		SK32	SK33	SK34	SK35	SK36
	√			30WQ03	30WQ04	30WQ05	
		√		31DQ03	31DQ04	31DQ05	
		√	SR302	SR303	SR304	SR305	SR306

Typical System Application for VIN=5V to driver 3 x 1W series LED units

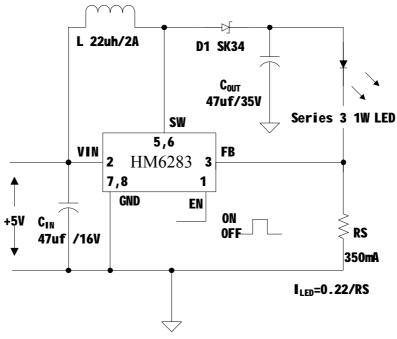


Figure 5. HM6283 System Parameters Test Circuit (5V ~ 3 x 1W LED)

Typical System Application for VIN>=12V to driver 6 x 1W series LED units

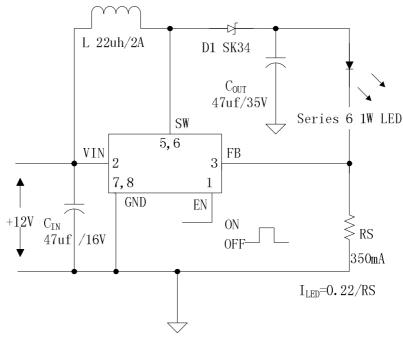


Figure 6. HM6283 System Parameters Test Circuit (12V ~ 6 x 1W LED)

Typical System Application for VIN>=12V to driver 6 series x 28 parallel White LED Array

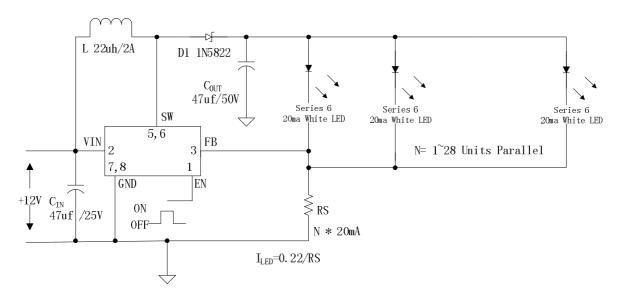


Figure 7. HM6283 System Parameters Test Circuit (12V ~ 6 x 28 White LED)

Typical System Application for SEPIC Buck-Boost LED Driver

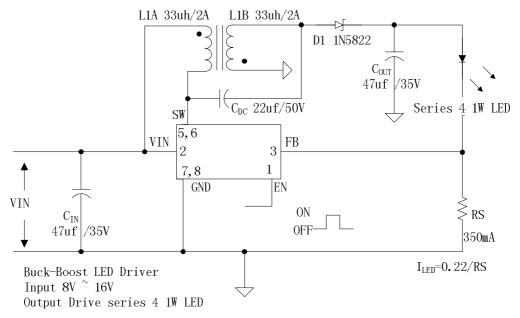


Figure 8. HM6283 System Parameters Test Circuit (Buck-Boost LED Driver)

Typical System Application for VIN>=12V to driver 6 x 1W series LED units With Dimming Function

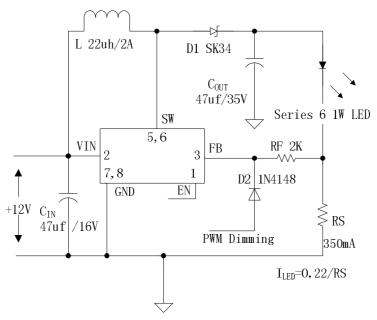
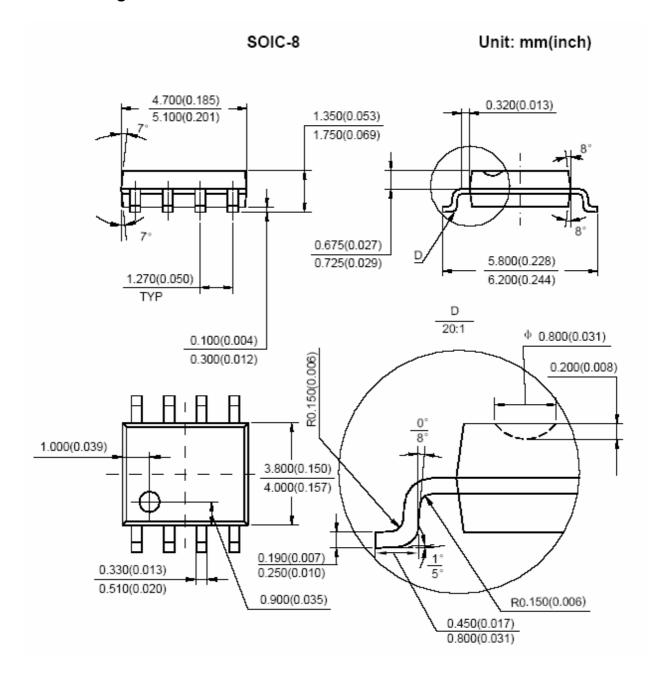



Figure 9. HM6283 System Parameters Test Circuit (12V ~ 6 x 1W LED with Dimming Function)

Package Information

SOP8 Package Mechanical Dimensions

