
ULTRA-SMALL PACKAGE PWM/PFM SWITCHING CONTROL

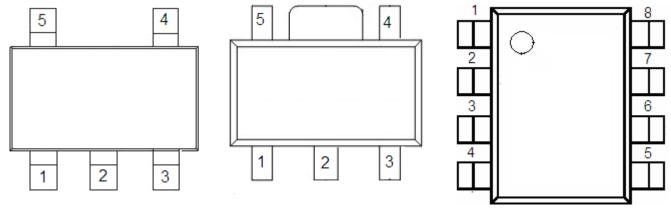
STEP-UP SWITCHING REGULATOR

Description

The HM1534 series is a CMOS step-up switching regulator which mainly consists of a reference voltage source, an oscillation circuit, an error amplifier, a phase compensation circuit, a PWM/PFM switching control circuit. With an internal low-ON-resistance Nch Power MOS, this product is applicable to applications requiring high efficiency and high output current. The HM1534 series switches its operation to the PFM control circuit whose duty ratio is 15 % with to the PWM/PFM switching control circuit under a light load and to prevent decline in the efficiency by IC operation current.

Selection Guide

Feature


- Low voltage operation: Start-up is guaranteed from 0.9 V(I_{OUT} =1 mA)
- Duty ratio: Built-in PWM/PFM switching control circuit 15 to 78 % .
- oscillator frequency: 1.0MHz
- Output voltage range: 1.5V ~12 V
- Output voltage accuracy: ±2%
- Soft start function: 2 mS.
- PACKAGE: SOT23-5,SOT89-5,SOP8

Typical Application

- MP3 players, digital audio players
- Digital cameras, GPS, wireless transceiver
- Portable devices

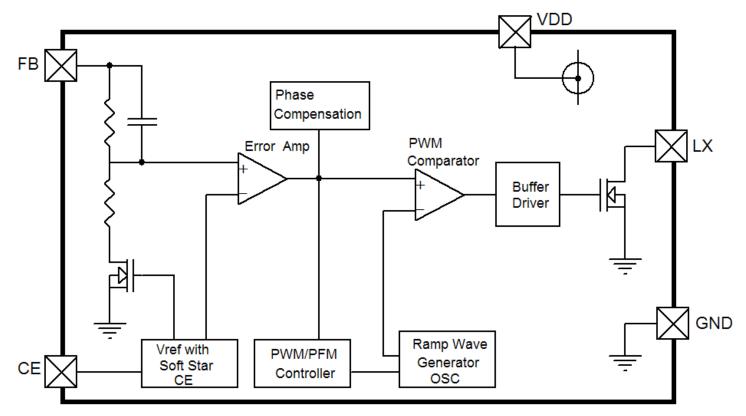
Pin Configuration

SOT23-5

SOT89-5

SOP8

Pin information


ТҮРЕ	POSFIX	PACKAGE	SWICHING TRANSISTOR	CE FUNCTION	VDD FUNCTION	FB FUNCTION	FEATURE
HM1534F	MR	SOT23-5	Build in Transistor				
	PR	SOT89-5		Yes	Yes	Yes	LX+FB
	SOP8	SOP8					

<A%)'(:[`]

Pin Number			Pin Name	Function	
SOT23-5	SOT89-5	SOP8	FIII Naille	Function	
1	3	3	CE	Shutdown pin	
2	2	7,8	LX	External transistor connection pin	
3	1	2	GND	GND pin	
4	5	5,6	VDD	IC power supply pin	
5	4	4	FB	Feed Back voltage pin	
		1	NC	NC	

Block Diagram

Absolute Maximum Rang

PARAMETER	SYMBOL	RATING		UNIT
VDD Pin Voltage	VDD	-0.3~6.5		V
LX Pin Voltage	LX	-0.3~20		V
CE Pin Voltage	V_{CE}	-0.3~Vin+0.3		V
LX Pin Current	I_{LX}	±4000		mA
		SOT23-5	300	
Power Dissipation	Pd	SOT89-5	500	mW
		SOP8	800	
Operating Temperature Range	T _{Opr}	-25~+85		°C
Storage Temperature Range	T _{stg}	-40~+125		°C

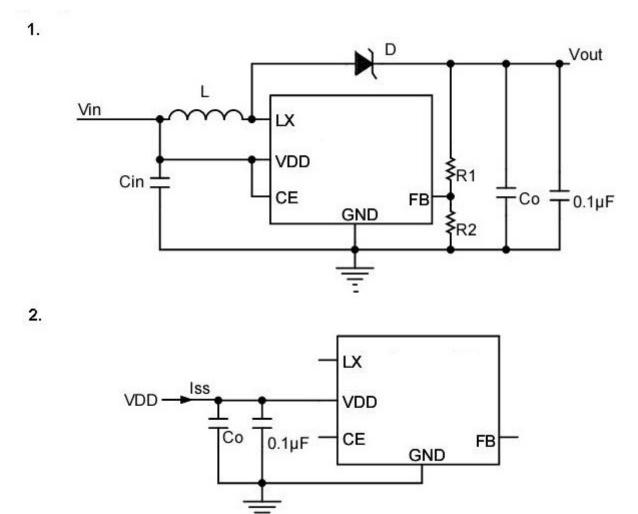
Electrical Characteristics

<A%)'(:

Measuring conditions: VDD=V_{CE}=3.3V, Topt=25 $^{\circ}$ C $_{\circ}$ Unless otherwise specified $_{\circ}$

Parameter	SYMBOL	CON	DITION	MIN	TYP	MAX	UNIT	Circuit
Feedback voltage	V_{FB}	-		1.225	1.25	1.275	V	2
Input voltage	VDD	-		-	-	6	V	2
Operation start voltage	V _{ST1}	I _{OUT} =1mA		-	-	0.9	V	2
Oscillation start voltage	V_{ST2}	No external parts, volta	age applied to V _{OUT}	-	-	0.7	V	1
Operation holding voltage	V _{HLD}	I _{o∪⊤} =1mA,Measured b gradually	by decreasing VIN voltage	0.7	-	-	V	2
Current consumption 1	I _{SS1}	V _{FB} =V _{FB} (S)× 0.95		-	4.0	-	mA	1
Current consumption 2	I _{SS2}	V _{FB} =1.5V		-	25	-	μA	1
Current consumption during shutdown	I _{SSS}	V _{CE} =0V		-	0.02	0.5	μA	1
Feedback voltage temperature coefficient		Ta=-25-85℃		-	±50	-	ppm/ ℃	2
Oscillation frequency	Fosc	-		0.8	1.0	1.2	MHz	1
Max. duty ratio	MAXDUTY	V _{FB} =V _{FB} (S)× 0.95		-	78	-	%	1
PWM/PFM switchingduty ratio	PFMDUTY	V _{FB} =V _{FB} (S)× 1.5, no load		-	15	-	%	1
	V_{SH}	Measured the oscillation	on at LX pin	0.75	-	-	V	1
Shutdown pin input voltage	V_{SL1}	Judged the stop of	V _{OUT} ≥1.5V	-	-	0.3	V	1
. enage	V _{SL2}	oscillation at LX pin	V _{OUT} <1.5V	-	-	0.2	V	1
Shutdown pin input	I _{SH}	V _{CE} =V _{FB} (S)×0.95		-0.1	-	0.1	μA	1
voltage	I _{SL}	V _{CE} =0V		-0.1	-	0.1	μA	1
Soft start time	tss	-		-	2	-	mS	2
Efficiency	EFFI	-		-	90	-	%	2

Note:


1. $V_{OUT}(S)$ is the set output voltage value, and V_{OUT} is the typical value of the output voltage.

- 2. $V_{OUT}(S)$ can be set by using the rate of V_{FB} and output voltage setting resistors (R1, R2).
- 3. $V_{FB}(S)$ is the set output voltage value.
- 4. VDD/V_{OUT} separate type:

 $1.8V \le VDD < 6V$ is recommended to stabilize the output voltage and oscillation frequency.

Test Circuit

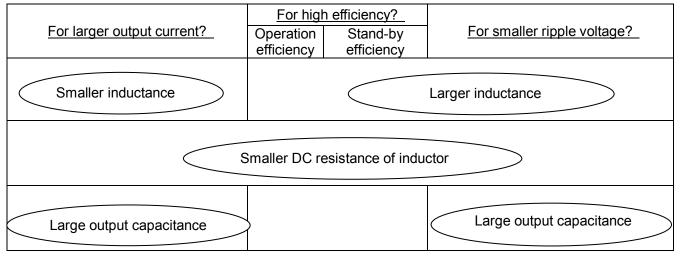
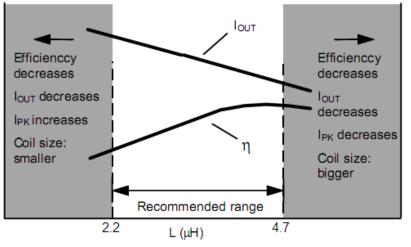
External parts (suggest)

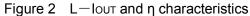
- 1、Diode use Schottky diode such as SS14 or SS34 (forward voltage drop:0.2V)
- 2、Inductor: 3.3 μ H (r<30m Ω)
- 3. Capacitor: ceramic capacitor $22\mu F$ (It is best to use two parallel connection ceramic capacitors)
- 4 Feed back resistors:R1+R2<50K Ω

External parts selection for DC/DC converter

The relationship between major characteristics of the step-up circuit and characteristics parameters of the external

parts are shown in Figure 1.


Figure 1 Relationship between major characteristics of the step-up circuit and external parts

1. Inductor

An inductance has strong influence on maximum output current I_{OUT} and efficiency η .1.

Figure 2 shows the relation between I_{OUT} , and η characteristics to L of HM1534.

The peak current (I_{PK}) increases by decreasing L and the stability of a circuit improves and I_{OUT} increases. If L is furthermore made small, efficiency falls and in running short, I_{OUT} decreases. (Based on the current drive capability of external switching transistor.)

The loss of I_{PK} by the switching transistor decreases by increasing L and the efficiency becomes maximum at a certain L value. Further increasing L decreases efficiency due to the loss of DC resistance of the coil. Also, I_{OUT} decreases, too.

Oscillation frequency is higher, smaller one can be chose and also makes coil smaller. The recommended inductances are 2.2 to 4.7 µH inductor for HM1534.

Choose a value for L by referring to the reference data because the maximum output current is due to the input voltage in an actual case. Choose an inductor so that I_{PK} does not exceed the allowable current. Exceeding the allowable current of the inductor causes magnetic saturation, remarkable low efficiency and destruction of the IC chip due to a large current.

IPK in uncontinuous mode is calculated from the following equation:

$$I_{PK} = \sqrt{\frac{2I_{OUT}(V_{OUT} + V_D - V_{IN})}{f_{OSC}.L}} (A)$$

Fosc = oscillation frequency, $V_{DD} = 0.4 V$.

2. Diode

Use an external diode that meets the following requirements:

- Low forward voltage: (VF<0.3 V)
- High switching speed: (50 ns max.)
- Reverse voltage: Vout + VF or more
- Rated current: IPK or more

3. Capacitor (CIN, Co)

To improve efficiency, an input capacitor (C_{IN}) lowers the power supply impedance and averages the input current. Select C_{IN} according to the impedance of the power supply used. The recommended capacitance is 10μ F for the HM1534.

An output capacitor (C_{OUT}), which is used to smooth the output voltage, requires a capacitance larger than that of the step-down type because the current is intermittently supplied from the input to the output side in the step-up type. A 22µF ceramic capacitor is recommended for the HM1534 . However, a higher capacitance is recommended if the output voltage is high or the load current is large. If the output voltage or load current is low, about 10µF can be used without problems.

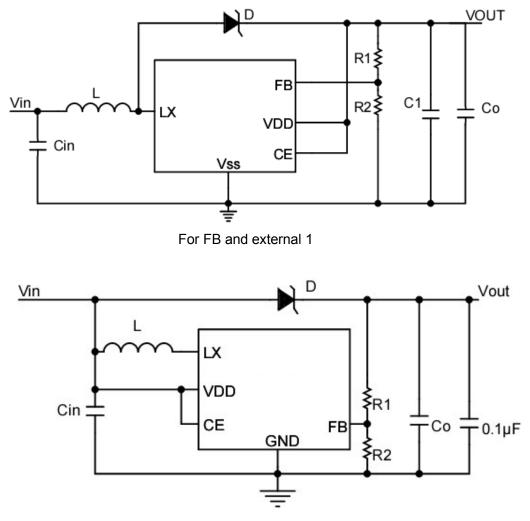
Select C_{OUT} after sufficient evaluation with actual application.

A ceramic capacitor can be used for both the input and output.

4. Precautions

• Mount external capacitors, a diode, and a coil as close as possible to the IC.

• Unique ripple voltage and spike noise occur in switching regulators. Because they largely depend on the coil and the capacitor used, check them using an actually mounted model.


•Make sure dissipation of the switching transistor (especially at a high temperature) does not exceed the allowable power dissipation of the package.

• The performance of this IC varies depending on the design of the PCB patterns, peripheral circuits and external

parts. Thoroughly test all settings with your device. Also, try to use recommended external parts.

Typical Application Circuit

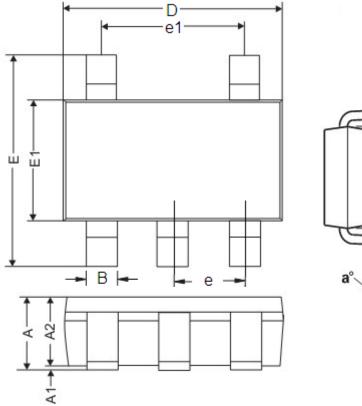
For FB and external 2

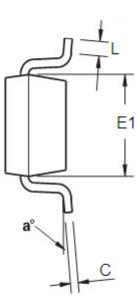
Note:

1. If VDD connected to Vin , Vin should above 2.5V.

2. < A % ' (F has three packages, suggestion: SOT23-5 loading is not more than 1A; SOT89-5 is not more than 1.5A; SOP8 is not more than 2A.

Typical Performance Characteristics

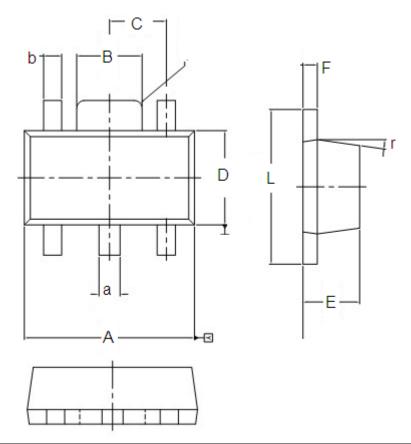

Voutvs. Output Current 5 Vin=3.6V 4.95 Vout (V) 4.9 Vin=3V Vin=4.2V 4.85 4.8 1500 0 500 1000 2000 3000 2500 lout (mA) Efficiency vs. Output Current 95 Vin=4.2V 90 <mark>%) г</mark> Vin=3V Vin=3.6V 75 70 0 500 1000 1500 2000 2500 3000 lout (mA)



Package Dimension

Package type:SOT23-5

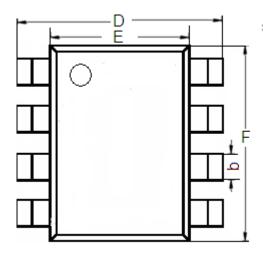
Unit:mm(inch)

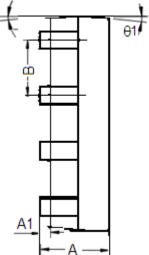

DIM	Millim	neters	Inches		
	Min	Мах	Min	Max	
A	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
E	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95	REF	0.0374REF		
e1	1.90REF		0.0748F	REF	
L	0.10	0.60	0.0039	0.0236	
a ⁰	0 ⁰	30 ⁰	00	30 ⁰	

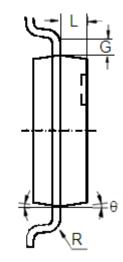
Package Dimension

Package type:SOT89-5

Unit:mm(inch)




DIM	Millim	neters	Inches		
	Min	Мах	Min	Max	
A	4.4 4.6		0.173	0.181	
а	0.5	0.62	0.02	0.024	
В	1.63	1.83	0.064	0.072	
b	0.44	0.54	0.017	0.021	
С	Туре	e:1.5	Type:0.059		
D	2.4	2.6	0.094	0.102	
E	1.4	1.6	0.054	0.063	
F	0.35	0.43	0.013	0.017	
L	3.95	4.25	0.155	0.167	
r	Тур	e:8 ⁰	Туре:	3 ⁰	



Package Dimension

Package type:SOP8 Unit:mm(inch)

Character	Dimensi	on (mm)	Dimension (Inches)			
Character	Min	Max	Min	Max		
A	1.350	1.750	0.053	0.069		
A1	0.1	0.3	0.004	0.012		
В	1.27(Typ.)	0.05(1	īур.)		
b	0.330	0.510	0.013	0.020		
D	5.8	6.2	0.228	0.244		
E	3.800	4.000	0.150	0.157		
F	4.7	5.1	0.185	0.201		
L	0.675	0.725	0.027	0.029		
G	0.32(Typ.)	0.013(Typ.)			
R	0.15(Typ.)	0.006(Typ.)			
θ1	7	0	7			
θ	8	0	8			