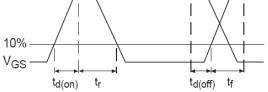
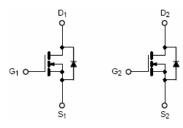

### Features

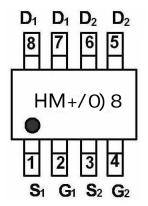

- $V_{DSS}=100V/V_{GSS}=\pm 20V/I_D=6.5A$  $R_{DS(ON)}=37m\Omega(max.)@V_{GS}=10V$
- Reliable and Rugged
- Advanced trench process technology
- High Density Cell Design For Low On-Resistance

# **Applications**

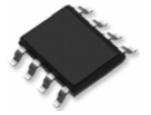
- Power Management in Inverter System
- Boost for LED Backlight


# Switching Time Test Circuit and Waveforms






#### Package Marking and Ordering Information


| Device Marking | Device     | Device Package | Reel Size | Tape width | Quantity |
|----------------|------------|----------------|-----------|------------|----------|
| ÁPTIÌJGOE      | ÁPTIÌ JGOE |                | -         | -          |          |



Schematic diagram



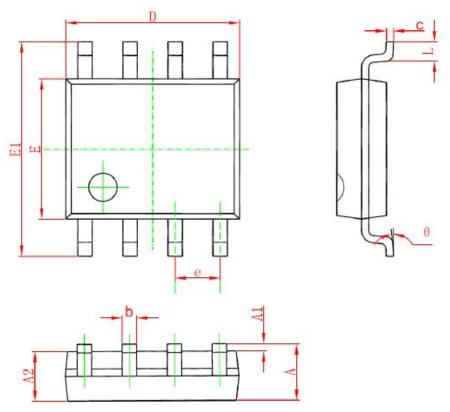
Marking and pin Assignment



SOP-8 top view

## **Absolute Maximum Ratings** (T<sub>A</sub>=25°C unless otherwise noted)

| Symbol           | Parameter                                             | Typical   | Unit |
|------------------|-------------------------------------------------------|-----------|------|
| V <sub>DSS</sub> | Drain-Source Voltage                                  | 100       | V    |
| V <sub>GSS</sub> | Gate –Source Voltage                                  | ±20       | V    |
| T                | Continuous Drain Current T <sub>C</sub> =100°C        | 6.5       | Α    |
| I <sub>D</sub>   | Continuous Drain Current                              | 4.5       | Α    |
| I <sub>DP</sub>  | 300us Pulsed Drain Current Tested $T_{C}=25^{\circ}C$ | 20        | Α    |
| Is               | Diode Continuous Forward Current                      | 6.5       | Α    |
| $T_J$            | Operating Junction Temperature                        | 150       | °C   |
| T <sub>STG</sub> | Storage Temperature Range                             | -55 ~ 150 | °C   |


## Electrical Characteristics (TA=25°C unless otherwise noted)

| $\begin{tabular}{ c c c c c } \hline Static Characteristics & V_{GS} = 0V, I_D = 250uA & 100 & V \\ \hline BV_{DSS} & Drain-Source Breakdown Voltage V_{GS} = 0V, V_{GS} = 0V & 1 & uA \\ \hline I_{DSS} & Zero Gate Voltage Drain Current & V_{DS} = 80V, V_{GS} = 0V & 100 & V \\ \hline T_{J} = 125^\circ C & 100 & UA \\ \hline V_{GS(th)} & Gate Threshold Voltage & V_{DS} = V_{GS, I_D} = 250uA & 2 & 3.3 & 4 & V \\ \hline I_{GSS} & Gate Leakage Current & V_{GS} = \pm 20V, V_{DS} = 0V & \pm 100 & nA \\ \hline R_{DS(on)}^{-1} & Drain-Source On-Resistance & V_{GS} = 10V, I_D = 6.5A & 33 & 37 & m\Omega \\ \hline Diode Characteristics & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Symbol                   | Parameter                       | Test Conditions                                         | Min. | Тур  | Max. | Unit  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------------------------------|------|------|------|-------|--|--|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Static Characteristics   |                                 |                                                         |      |      |      |       |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>BV</b> <sub>DSS</sub> | Drain-Source Breakdown Voltage  | V <sub>GS</sub> =0V,I <sub>D</sub> =250uA               | 100  |      |      | V     |  |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | т                        | Zero Gate Voltage Drain Current | $V_{DS}$ =80V, $V_{GS}$ =0V                             |      |      | 1    | uA uA |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I <sub>DSS</sub>         |                                 | T <sub>J</sub> =125°C                                   |      |      | 100  |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>GS(th)</sub>      | Gate Threshold Voltage          | V <sub>DS</sub> =V <sub>GS</sub> ,I <sub>D</sub> =250uA | 2    | 3.3  | 4    | V     |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Gate Leakage Current            | $V_{GS}$ =±20V, $V_{DS}$ =0V                            |      |      | ±100 | nA    |  |  |
| $\begin{array}{ c c c c c c } \hline \textbf{Diode Forward Voltage} & I_{SD}=6.5A, V_{GS}=0V & 1.1 & V \\ \hline t_{rr} & Reverse Recovery Time & I_{SD}=6.5A, & 60 & ns \\ \hline Q_{rr} & Reverse Recovery Charge & diF/dt=100A/us & 90 & nC \\ \hline \textbf{Dynamic Characteristics}^2 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                        | Drain-Source On-Resistance      | V <sub>GS</sub> =10V, I <sub>D</sub> =6.5A              |      | 33   | 37   | mΩ    |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                 |                                                         |      |      |      |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{SD}^{1}$             | Diode Forward Voltage           | $I_{SD}=6.5A, V_{GS}=0V$                                |      |      | 1.1  | V     |  |  |
| $\begin{array}{c c c c c c c } \hline \textbf{Dynamic Characteristics}^2 \\ \hline \textbf{R}_G & \text{Gate Resistance} & V_{GS}=0V, V_{DS}=0V, \\ \hline \textbf{Frequency=1MHz} & 1.4 & \Omega \\ \hline \textbf{C}_{iss} & \text{Input Capacitance} & V_{GS}=0V, V_{DS}=30V \\ \hline \textbf{C}_{oss} & \text{Output Capacitance} & V_{GS}=0V, V_{DS}=30V \\ \hline \textbf{C}_{rss} & \text{Reverse Transfer Capacitance} & V_{GS}=0V, V_{DS}=30V \\ \hline \textbf{C}_{rss} & \text{Reverse Transfer Capacitance} & V_{GS}=0V, V_{DS}=30V \\ \hline \textbf{Turn-On Delay Time} & V_{DD}=50V, \textbf{R}_{L}=30\Omega \\ \hline \textbf{t}_r & \text{Turn-On Rise Time} & I_{D}=1.0A, V_{GEN}=10V \\ \hline \textbf{t}_f & \text{Turn-Off Delay Time} & R_G=6\Omega & 0 \\ \hline \textbf{t}_f & \text{Turn-Off Fall Time} & V_{DS}=50V, V_{GS}=10V \\ \hline \textbf{Gate Charge Characteristics}^2 & V_{DS}=50V, V_{GS}=10V \\ \hline \textbf{Q}_{gs} & \text{Gate-Source Charge} & V_{DS}=50V, V_{GS}=10V \\ \hline \textbf{L}_{D}=6.5A & 0 \\ \hline \textbf{L}_{D}=$ | t <sub>rr</sub>          | Reverse Recovery Time           | I <sub>SD</sub> =6.5A,                                  |      | 60   |      | ns    |  |  |
| $\begin{array}{ c c c c c c c }\hline R_G & Gate Resistance & V_{GS}=0V, V_{DS}=0V, \\ \hline Frequency=1MHz & 1.4 & \Omega \\ \hline C_{iss} & Input Capacitance & V_{GS}=0V, V_{DS}=30V \\ \hline C_{oss} & Output Capacitance & V_{GS}=0V, V_{DS}=30V \\ \hline C_{rss} & Reverse Transfer Capacitance & V_{Frequency=1MHz} & 2600 & PF \\ \hline \hline C_{rss} & Reverse Transfer Capacitance & V_{DD}=50V, R_L=30\Omega \\ \hline t_{d(on)} & Turn-On Delay Time & V_{DD}=50V, R_L=30\Omega \\ \hline t_r & Turn-On Rise Time & I_{D}=1.0A, V_{GEN}=10V \\ \hline t_f & Turn-Off Delay Time & R_G=6\Omega & 78 & 0 \\ \hline \hline Gate Charge Characteristics^2 & V_{DS}=50V, V_{GS}=10V \\ \hline Q_{gs} & Gate-Source Charge & V_{DS}=50V, V_{GS}=10V \\ \hline U_{D}=6.5A & 0 & 13.5 & nC \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qrr                      | Reverse Recovery Charge         | diF/dt=100A/us                                          |      | 90   |      | nC    |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dynamic C                | haracteristics <sup>2</sup>     |                                                         |      |      |      |       |  |  |
| $ \begin{array}{c c c c c c } \hline C_{iss} & Input Capacitance \\ \hline C_{oss} & Output Capacitance \\ \hline C_{rss} & Reverse Transfer Capacitance \\ \hline t_{d(on)} & Turn-On Delay Time \\ \hline t_{d(off)} & Turn-On Rise Time \\ \hline t_{d(off)} & Turn-Off Delay Time \\ \hline t_{f} & Turn-Off Fall Time \\ \hline t_{f} & Turn-Off Fall Time \\ \hline t_{g} & Total Gate Charge \\ \hline Q_{gs} & Gate-Source Charge \\ \hline Q_{gs} & Gate-Source Charge \\ \hline \end{array} \begin{array}{c} Frequency=1MHz \\ \hline V_{GS}=0V, V_{DS}=30V \\ Frequency=1MHz \\ \hline V_{DD}=50V, R_{L}=30\Omega \\ I_{D}=1.0A, V_{GEN}=10V \\ R_{G}=6\Omega \\ \hline \end{array} \begin{array}{c} 25 \\ 18 \\ I_{D}=1.0A, V_{GEN}=10V \\ \hline \end{array} \begin{array}{c} 18 \\ 60 \\ \hline \end{array} \begin{array}{c} 18 \\ 0 \\ 78 \\ \hline \end{array} \begin{array}{c} 18 \\ 78 \\ \hline \end{array} \begin{array}{c} 18 \\ 78 \\ \hline \end{array} \begin{array}{c} 18 \\ 18 \\ \hline \end{array} \begin{array}{c} 18 \\ 78 \\ \hline \end{array} \begin{array}{c} 18 \\ \hline \end{array} \begin{array}{c} 18 \\ 78 \\ \hline \end{array} \begin{array}{c} 113.5 \\ \hline \end{array} \begin{array}{c} 13.5 \\ \hline \end{array} \begin{array}{c} 10 \\ 13.5 \\ \hline \end{array} \begin{array}{c} 10 \\ 13.5 \\ \hline \end{array} \begin{array}{c} 10 \\ 10 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D .                      | Gate Resistance                 | $V_{GS}=0V, V_{DS}=0V,$                                 |      | 1.4  |      | Ω     |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                 | Frequency=1MHz                                          |      | 1.4  |      |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>iss</sub>         | Input Capacitance               | $V_{} = 0 V V_{} = -20 V$                               |      | 2000 |      | pF    |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Output Capacitance              | -                                                       |      | 450  |      |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>rss</sub>         | Reverse Transfer Capacitance    | riequency-nvinz                                         |      | 260  |      |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Turn-On Delay Time              | V = 50 V D = 200                                        |      | 25   |      |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>r</sub>           | Turn-On Rise Time               |                                                         |      | 18   |      | ns    |  |  |
| $t_f$ Turn-Off Fall Time $R_G^{-0S2}$ 78Gate Charge Characteristics² $Q_g$ Total Gate Charge $V_{DS}=50V, V_{GS}=10V$ 50 $Q_{gs}$ Gate-Source Charge $I_D=6.5A$ 13.5nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>d(off)</sub>      | Turn-Off Delay Time             |                                                         |      | 60   |      |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Turn-Off Fall Time              | NG-022                                                  |      | 78   |      |       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gate Charg               | ge Characteristics <sup>2</sup> |                                                         |      |      |      |       |  |  |
| $\frac{Q_{gs}}{Q_{gs}} = \frac{Gate-Source Charge}{Gate-Source Charge} = \frac{V_{DS}=50V, V_{GS}=10V}{I_{D}=6.5A} = \frac{13.5}{12.5} = \frac{10V}{12.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                 | $\mathbf{M} = 50\mathbf{M}\mathbf{M} = 10\mathbf{M}$    |      | 50   |      | nC    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -17                      |                                 |                                                         |      | 13.5 |      |       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q <sub>gd</sub>          |                                 | $I_{\rm D}=0.3A$                                        |      | 11   |      |       |  |  |

Note:

1: Pulse test ; pulse width  $\leq$  300ns, duty cycle  $\leq$  2%.

2: Guaranteed by design, not subject to production testing.



#### **SOP-8 PACKAGE IN FORMATION**

| Symbol | Dimensions | n Millimeters | Dimensions In Inches |            |  |  |
|--------|------------|---------------|----------------------|------------|--|--|
|        | Min.       | Max.          | Min.                 | Max.       |  |  |
| A      | 2.200      | 2.400         | 0.087                | 0.094      |  |  |
| A1     | 0.000      | 0.127         | 0.000                | 0.005      |  |  |
| b      | 0.660      | 0.860         | 0.026                | 0.034      |  |  |
| с      | 0.460      | 0.580         | 0.018                | 0.023      |  |  |
| D      | 6.500      | 6.700         | 0.256                | 0.264      |  |  |
| D1     | 5.100      | 5.460         | 0.201                | 0.215      |  |  |
| D2     | 0.483      | 0.483 TYP.    |                      | 0.190 TYP. |  |  |
| E      | 6.000      | 6.200         | 0.236                | 0.244      |  |  |
| е      | 2.186      | 2.386         | 0.086                | 0.094      |  |  |
| L      | 9.800      | 10.400        | 0.386                | 0.409      |  |  |
| L1     | 2.900      | 2.900 TYP.    |                      | 0.114 TYP. |  |  |
| L2     | 1.400      | 1.700         | 0.055                | 0.067      |  |  |
| L3     | 1.600 TYP. |               | 0.063 TYP.           |            |  |  |
| L4     | 0.600      | 1.000         | 0.024                | 0.039      |  |  |
| Φ      | 1.100      | 1.300         | 0.043                | 0.051      |  |  |
| θ      | 0°         | 8°            | 0°                   | 8°         |  |  |
| h      | 0.000      | 0.300         | 0.000                | 0.012      |  |  |
| V      | 5.350 TYP. |               | 0.211 TYP.           |            |  |  |

#### Attention:

- Any and all H&M SEMI products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your H&M SEMI representative nearest you before using any H&M SEMI products described or contained herein in such applications.
- H&M SEMI assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all H&M SEMI products described or contained herein.
- Specifications of any and all H&M SEMI products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- H&M Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all H&M SEMI products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of H&M Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. H&M SEMI believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the H&M SEMI product that you intend to use.

This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.