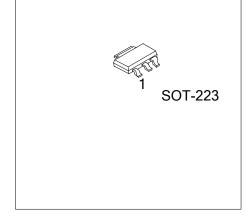


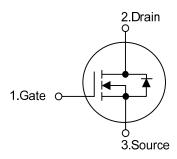
UNISONIC TECHNOLOGIES CO., LTD

UTT6N10 Power MOSFET

6.0A, 100V N-CHANNEL **POWER MOSFET**


DESCRIPTION

The UTC UTT6N10 is an N-channel enhancement mode Power FET, it uses UTC's advanced technology to provide customers a minimum on-state resistance, high switching speed and ultra low gate charge.


The UTC UTT6N10 is usually used in DC-DC Conversion.

- * $R_{DS(on)}$ < 200m Ω @ V_{GS} = 10 V, I_D =3A
- * High Switching Speed

SYMBOL

ORDERING INFORMATION

	Ordering Number	Package	Pin Assignment			Dooking	
			1	2	3	Packing	
	UTT6N10G-AA3-R	SOT-223	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source UTT6N10G-AA3-R - (1)Packing Type (1) R: Tape Reel (2) AA3: SOT-223 (2)Package Type (3) G: Halogen Free and Lead Free (3)Green Package

MARKING

www.unisonic.com.tw 1 of 3 UTT6N10 Power MOSFET

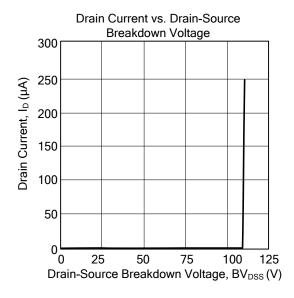
■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise noted)

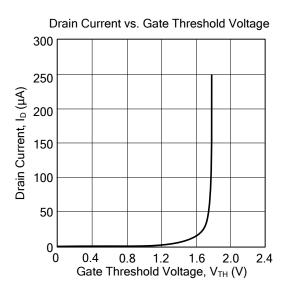
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	100	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	Continuous	I_D	6	Α	
rain Current	Pulsed	I_{DM}	24	Α	
Power Dissipation	sipation T _A =25°C (Note 1)		0.8	W	
Junction Temperature		T_J	150	°C	
Storage Temperature Range		T_{STG}	-55~+150	°C	

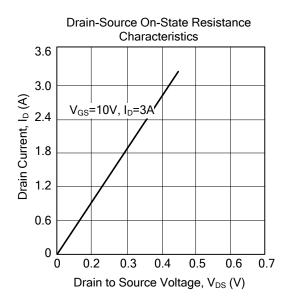
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

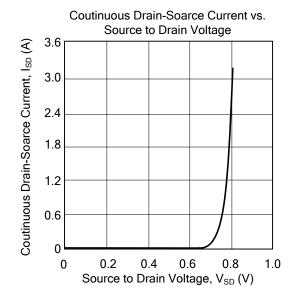
■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note 1)	θ_{JA}	150	°C/W
Junction to Case	θ_{JC}	12	°C/W


■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage		BV_{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V		
Drain-Source Leakage Current		I _{DSS}	V _{DS} =80V, V _{GS} =0V			1	μΑ		
Gate-Source Leakage Current	Forward	- I _{GSS}	V_{GS} =+20V, V_{DS} =0V			+100	nA		
Gale-Source Leakage Current	Reverse		V_{GS} =-20V, V_{DS} =0V			-100	nA		
ON CHARACTERISTICS (Note:	2)								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0		3.0	V		
Statia Drain Source On State Registance	R _{DS(ON)}	V_{GS} =10V, I_D =3A		145	200	mΩ			
Static Drain-Source On-State Re	Static Drain-Source On-State Resistance		V_{GS} =4.5V, I_D =1A		155	225	mΩ		
DYNAMIC PARAMETERS									
Input Capacitance	ce C _{ISS}				700	900	pF		
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		42	60	pF		
Reverse Transfer Capacitance		C_{RSS}			10	15	pF		
SWITCHING PARAMETERS									
Total Gate Charge		Q_G	-V _{GS} =10V, V _{DD} =50V, I _D =1.3A -I _G =100μA		23		nC		
Gate to Source Charge		Q_GS			36		nC		
Gate to Drain Charge		Q_GD			5		nC		
Turn-ON Delay Time		$t_{D(ON)}$			32		ns		
Rise Time		t_R	V_{DD} =30V, I_{D} =0.5A, V_{GS} =10V, R_{GEN} =25 Ω		28		ns		
Turn-OFF Delay Time		$t_{D(OFF)}$			220		ns		
Fall-Time		t_{F}			41		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current		I_S				6	Α		
Source Current Pulsed		I _{SM}				24	Α		
Drain-Source Diode Forward Voltage		V_{SD}	I _S =3.2A, V _{GS} =0V (Note 2)		0.86	1.3	V		


Notes: 1. θ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.


^{2.} Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.