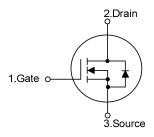
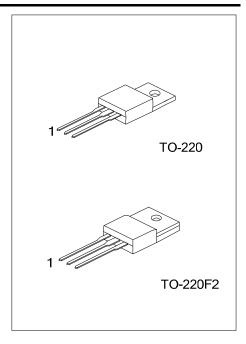


UNISONIC TECHNOLOGIES CO., LTD

30N20 **Preliminary Power MOSFET**

30A, 200V N-CHANNEL **POWER MOSFET**

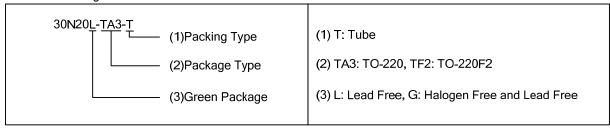

DESCRIPTION

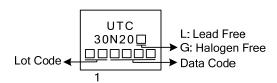

The UTC 30N20 is an N-channel mode Power FET, it uses UTC's advanced technology. This technology allows a minimum on-state resistance, superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

FEATURES

- * $R_{DS(ON)}$ < 75m Ω @ V_{GS} =10V, I_{D} =15A
- * Low Gate Charge (Typical 60nC)
- * High Switching Speed

SYMBOL




ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
30N20L-TA3-T	30N20G-TA2-T	TO-220	G	D	S	Tube	
30N20L-TF2-T	30N20G-TF2-T	TO-220F2	G	D	S	Tube	

Pin Assignment: G: Gate D: Drain S: Source Note:

MARKING

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	200	V
Gate-Source Voltage		V_{GSS}	±30	V
Drain Current	Continuous	I_{D}	30	Α
	Pulsed	I_{DM}	124	Α
Avalanche Current		I_{AR}	30	Α
Avalancha Engravi	Single Pulsed	E _{AS} 640		mJ
Avalanche Energy	Repetitive	E_{AR}	18	mJ
Power Dissipation	TO-220	P _D	190	W
	TO-220F2		42	W
Junction Temperature		T_J	+150	°C
Storage Temperature Range		T_{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV_{DSS}	I _D =250μA, V _{GS} =0V	200			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =200V			1	μΑ
Gate-Source Leakage Current	Forward	I _{GSS}	V_{GS} =+30V, V_{DS} =0V			+100	nA
	Reverse		V_{GS} =-30V, V_{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	I _D =250μA			5	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =15A			75	mΩ
DYNAMIC PARAMETERS		_			-		
Input Capacitance Output Capacitance		C _{ISS}	V _{GS} =0V, V _{DS} =25V, f=1MHz		2400	3100	pF
		Coss			430	560	pF
Reverse Transfer Capacitance		C _{RSS}			55	70	pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G	V _{DD} =50V, V _{GS} =10V , I _D =1.3A		60	78	nC
Gate to Source Charge		Q_GS			17		nC
Gate to Drain Charge		Q_GD			27		nC
Turn-ON Delay Time Rise Time Turn-OFF Delay Time Fall-Time		t _{D(ON)}			40		ns
		t _R	V_{DD} =30V, I_{D} =0.5A, R_{G} =25 Ω , V_{GS} =0~10V		280		ns
		t _{D(OFF)}			125		ns
		t _F			115		ns
SOURCE- DRAIN DIODE RATING	S AND CH	ARACTERIST	cs				
Maximum Body-Diode Continuous Current		Is				30	Α
Maximum Body-Diode Pulsed Current		I _{SM}				124	Α
Drain-Source Diode Forward Voltage		V_{SD}	I _S =30A, V _{GS} =0V			1.5	V

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

