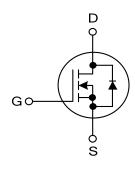


UNISONIC TECHNOLOGIES CO., LTD

15N10 **Power MOSFET**

14.7A, 100V (D-S) N-CHANNEL **POWER MOSFET**

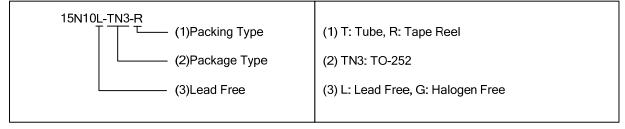
DESCRIPTION

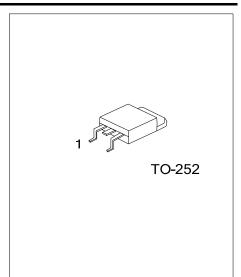

The UTC 15N10 is an N-Channel enhancement MOSFET, it uses UTC's advanced technology to provide customers with a minimum on-state resistance, high switching speed and low gate charge.

The UTC 15N10 is suitable for high efficiency switching DC/DC converter, LCD display inverter and load switch.

FEATURES

- * $R_{DS(ON)}$ =0.08 Ω @ V_{GS} =10V, I_{D} =8A
- * Low gate charge (Typ=24nC)
- * Low C_{RSS} (Typ=23pF)
- * High switching speed


SYMBOL



ORDERING INFORMATION

Ordering Number		Dookono	Pin Assignment			Daakina	
Lead Free	Halogen Free	Package	1	2	3	Packing	
15N10L-TN3-T	15N10G-TN3-T	TO-252	G	D	S	Tube	
15N10L-TN3-R	15N10G-TN3-R	TO-252	G	D	S	Tape Reel	

Pin Assignment: G: Gate D: Drain Note: S: Source

15N10

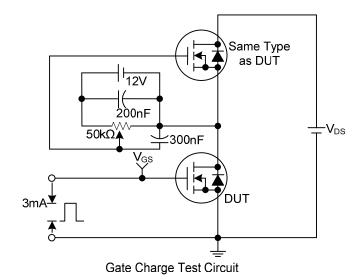
■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise noted)

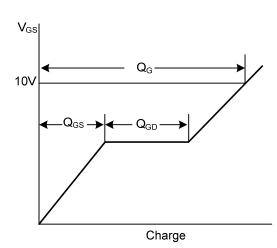
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	100	V
Gate-Source Voltage		V_{GSS}	±20	V
	T _C =25°C, T _J =150°C	I _D	14.7	Α
	Continuous $\frac{T_C=25^{\circ}C, T_J=150^{\circ}C}{T_C=70^{\circ}C, T_J=150^{\circ}C}$		13.6	Α
	Pulsed	I _{DM}	59	Α
T _C =25°C			34.7	W
Power Dissipation	T _C =70°C	P _D	22.2	W
Operating Junction Temperature		T_J	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

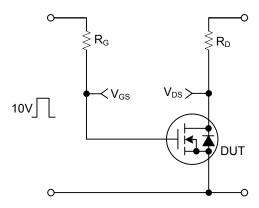
■ THERMAL CHARACTERISTICS (T_A=25°C, unless otherwise noted)

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case (Note)	θ_{JC}	3.6	°C/W

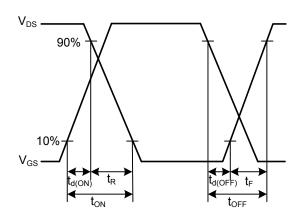

Note: The device mounted on 1in² FR4 board with 2 oz copper.


■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

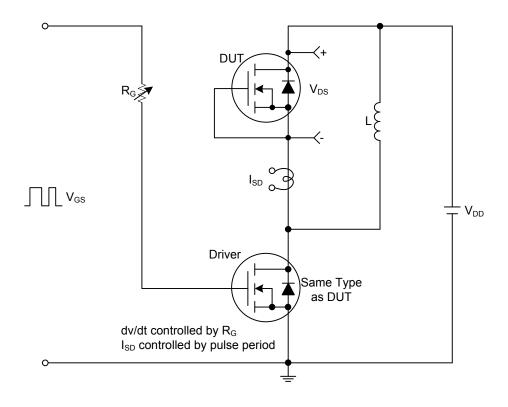
PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =80V, V _{GS} =0V			1	μΑ			
Cata Sauraa Laakaga Current	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nΑ			
Gate-Source Leakage Current		V _{GS} =-20V, V _{DS} =0V			-100	nΑ			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$			3	V			
Drain-Source On-State Resistance (Note)	R _{DS(ON)}	V_{GS} =10V, I_D =8A		80	100	mΩ			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}			890		pF			
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =15V, f=1MHz		58		pF			
Reverse Transfer Capacitance	C _{RSS}			23		pF			
SWITCHING PARAMETERS									
Total Gate Charge	Q_G	V _{GS} =10V, V _{DS} =80V, I _D =10A		24		nC			
Total Gate Charge	Q_G			13		nC			
Gate to Source Charge	Q_GS	V _{GS} =4.5V, V _{DS} =80V, I _D =10A		4.6		nC			
Gate to Drain Charge	Q_GD			7.6		nC			
Gate-Resistance	R_G	V _{DS} =0V, V _{GS} =0V, f=1MHz		0.9		Ω			
Turn-ON Delay Time	t _{D(ON)}			14		ns			
Rise Time	t _R	V_{DS} =50V, R_L =5 Ω , V_{GEN} =10V,		33		ns			
Turn-OFF Delay Time	t _{D(OFF)}	$R_G=1\Omega$		39		ns			
Fall-Time	t _F			5		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Drain-Source Diode Forward Voltage	V_{SD}	I _S =8A, V _{GS} =0V		0.9	1.2	V			

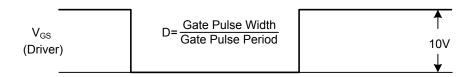

Note: Pulse test: pulse width≤300us, duty cycle≤2%, Guaranteed by design, not subject to production testing.

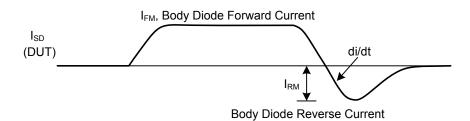
■ TEST CIRCUITS AND WAVEFORMS

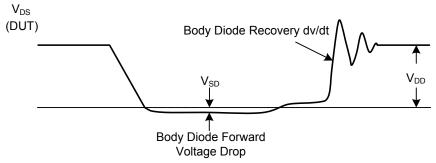


Gate Charge Waveforms

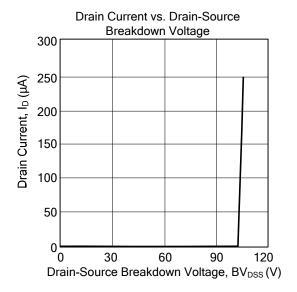


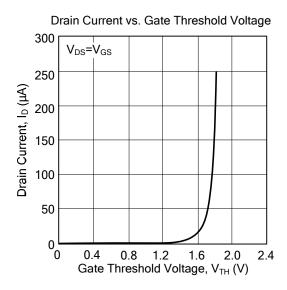

Resistive Switching Test Circuit

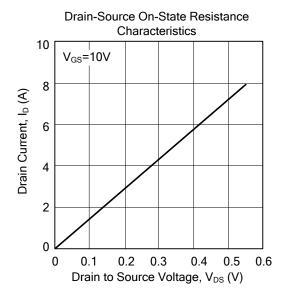


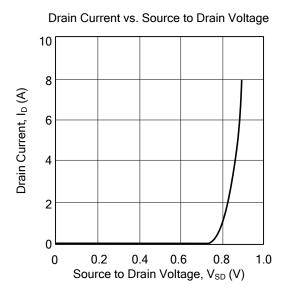

Resistive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS








Peak Diode Recovery dv/dt Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.