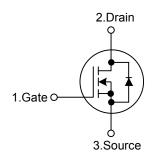


UNISONIC TECHNOLOGIES CO., LTD

UTT20N06 Power MOSFET

20A, 60V N-CHANNEL POWER MOSFET

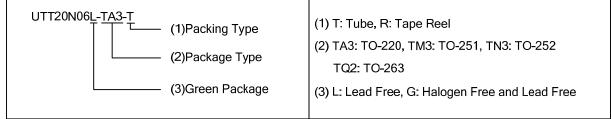
■ DESCRIPTION

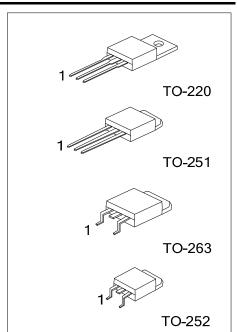

The UTC **UTT20N06** is an N-channel enhancement mode power MOSFET using UTC's advanced technology to provide customers with a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

The UTC **UTT20N06** is universally applied in low voltage, such as automotive, high efficiency switching for DC/DC converters and DC motor control.

■ FEATURES

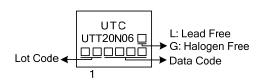
- * $R_{DS(ON)}$ <46m Ω @ V_{GS} = 10 V
- * Typically 58pF low C_{RSS}
- * High switching speed
- * Typically 21.2nC low gate charge


■ SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT20N06L-TA3-T	UTT20N06G-TA3-T	TO-220	G	D	S	Tube	
UTT20N06L-TM3-T	UTT20N06G-TM3-T	TO-220	G	D	S	Tube	
UTT20N06L-TN3-R	UTT20N06G-TN3-R	TO-252	G	D	S	Tape Reel	
UTT20N06L-TQ2-T	UTT20N06G-TQ2-T	TO-263	G	D	S	Tube	
UTT20N06L-TQ2-R	UTT20N06G-TQ2-R	TO-263	G	D	S	Tape Reel	


Note: Pin Assignment: G: Gate D: Drain S: Source

<u>www.unisonic.com.tw</u> 1 of 4

■ MARKING

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	60	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	Continuous	I _D	20	Α	
	Pulsed	I_{DM}	80	Α	
Single Pulsed Avalanche Energy		E _{AS}	170	mJ	
Dawar Dissination	TO-220/TO-263	J	89	W	
Power Dissipation	TO-251/TO-252	P_D	50	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T_{STG}	-55 ~ + 150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220/TO-263	0	62	°C/W	
	TO-251/TO-252	θ_{JA}	110		
Junction to Case	TO-220/TO-263	θЈС	1.4	°C/W	
	TO-251/TO-252		2.5		

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS			•	•			
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	μA
			V _{DS} =48V, V _{GS} =0V, T _C =125°C			10	μA
Gate-Source Leakage Current	Forward	I _{GSS}	V _{GS} =+16V, V _{DS} =0V			+100	nA
	Reverse		V _{GS} =-16V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =20A		37.5	46	mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C_{ISS}			725	1015	pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		213	300	pF
Reverse Transfer Capacitance		C_{RSS}			58	120	pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G	V _{GS} =10V, V _{DS} =30V, I _D =20A,		21.2	30	nC
Gate to Source Charge		Q_GS	$V_{GS} = 10V, V_{DS} = 30V, I_D = 20A,$ $I_{G} = 3.33 \text{mA}$		5.6		nC
Gate to Drain Charge		Q_GD	1G-5.55111A		7.3		nC
Turn-ON Delay Time		t _{D(ON)}			9.5		ns
Rise Time		t _R	V_{DD} =30V, I_{D} =1A, R_{G} =25 Ω ,		60.5	120	ns
Turn-OFF Delay Time		t _{D(OFF)}	V _{GS} =10V		27.1		ns
Fall-Time		t _F			37.1	80	ns
SOURCE- DRAIN DIODE RATI	NGS AND	CHARACTER	ISTICS				
Maximum Body-Diode Continuous Current		Is		20			Α
Maximum Body-Diode Pulsed Current		I _{SM}		80			Α
Drain-Source Diode Forward Voltage		V_{SD}	I _S =20A, V _{GS} =0V			1.2	V

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

