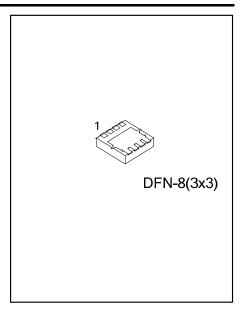


UTC UNISONIC TECHNOLOGIES CO., LTD

UT7410 Preliminary Power MOSFET

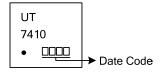
30V, 24A N-CHANNEL ENHANCEMENT MODE POWER MOSFET


DESCRIPTION

The UTC UT7410 is an N-channel enhancement MOSFET, it uses UTC's advanced technology to provide the customers with perfect $R_{DS(ON)}$ and low gate charge.

The UTC UT7410 is suitable for Load Switch and DC-DC converters applications, etc.

^{*} $R_{DS(ON)}$ < 24m Ω @ V_{GS} =10V, I_{D} =8A $R_{DS(ON)}$ < 32m Ω @ V_{GS} =4.5V, I_D =7A



ORDERING INFORMATION

Ordening Number			Darling	Pin Assignment							Daaldaa	
	Ordering Number	Package	1	2	3	4	5	6	7	8	Packing	
	UT7410G-K08-3030-F	DFN-8(3×3)	S	S	S	G	D	D	D	D	Tape Reel	
No	e: Pin Assignment: G: Gate	D: Drain S	S: Source									

UT7410<u>G-K08-3030</u>-<u>R</u> - (1)Packing Type (1) R: Tape Reel (2) K08-3030: DFN-8(3×3) (2)Package Type - (3)Green Package (3) G: Halogen Free and Lead Free

MARKING

www.unisonic.com.tw 1 of 6

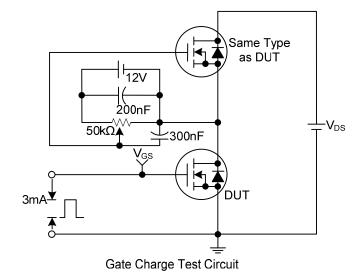
^{*} Low Gate Charge (typical 9.8nC)

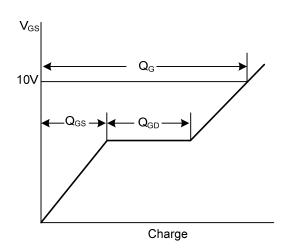
■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise noted)

PARAMETER			SYMBOL	RATINGS	UNIT	
Drain-Source Voltage			V_{DSS}	30	V	
Gate-Source Voltage			V_{GSS}	±20	V	
		$T_{C}=100^{\circ}C$ $T_{D}=100^{\circ}C$ $T_{C}=100^{\circ}C$ T_{C	T _C =25°C	,	24	Α
	Continuous		15	Α		
Drain Current	Continuous		T _A =25°C	I _{DSM}	9.5	Α
			T _A =70°C		7.7	Α
	Pulsed (Note 3)			I _{DM}	40	Α
	,		T _C =25°C	Б	20	W
Dower Dissipa	tion	(Note 2)	T _C =100°C	P_{D}	8.3	W
Power Dissipation		(Note 1)	T _A =25°C	В	3.1	W
			T _A =70°C	P _{DSM}	2	W
Junction Temperature				T_J	-55~+150	°C
Storage Temperature Range			·	T _{STG}	-55~+150	°C

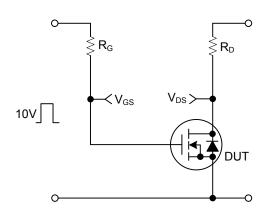
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

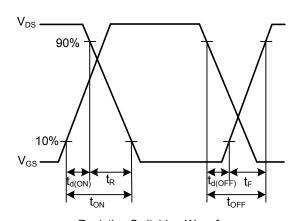

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	
Lunction to Ambient (Note 1)	t≤10s	0		30	40	°C/W
Junction to Ambient (Note 1)	Steady-State	θ_{JA}		60	75	°C/W
Junction to Case (Note 2)	Steady-State	θ_{JC}		5	6	°C/W

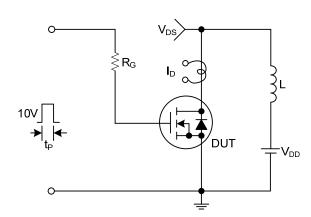

- Notes: 1. The value of θ_{JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on θ_{JA} t≤10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.
 - 2. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
 - 3. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C.

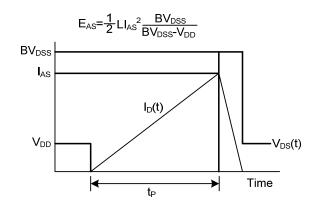
■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise noted)

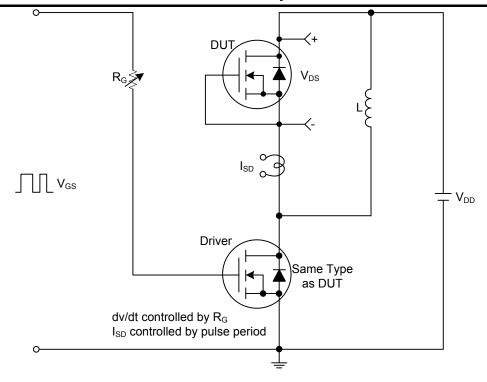

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltag	е	BV _{DSS}	I _D =250μA, V _{GS} =0V	30			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =30V, V _{GS} =0V			1	μΑ
Cata Carraga Lagliana Crimant	Forward		V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current	Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.4	1.8	2.5	V
Static Drain-Source On-Resistance		В	V_{GS} =10V, I_D =8A		18	24	mΩ
		R _{DS(ON)}	V_{GS} =4.5V, I_D =7A		27	32	mΩ
Forward Transconductance		g fs	V_{DS} =5V, I_D =8A		30		S
On State Drain Current		I _{D(ON)}	V _{GS} =10V, V _{DS} =5V	40			Α
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			550		pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =15V, f=1.0MHz		110		pF
Reverse Transfer Capacitance		C _{RSS}			55		pF
Gate resistance		R_G	V_{GS} =0V, V_{DS} =0V, f=1.0MHz		4	4.9	Ω
SWITCHING PARAMETERS							
Total Cata Charge	10V	Q_{G}			9.8		nC
Total Gate Charge	4.5V	$V = V_{GS} = 10V, V_{DS} = 15V, I_{D} = 8A$		4.6		nC	
Gate to Source Charge		Q_GS	V _{GS} -10V, V _{DS} -15V, I _D -8A		1.8		nC
Gate to Drain Charge		Q_GD			2.2		nC
Turn-ON Delay Time		t _{D(ON)}			5		ns
Rise Time		t _R	V_{GS} =10V, V_{DS} =15V, R_L =2 Ω ,		3.2		ns
Turn-OFF Delay Time		t _{D(OFF)}	R_{GEN} =3 Ω		24		ns
Fall-Time		t _F			ns		
SOURCE- DRAIN DIODE RATII	NGS AND (CHARACTER	RISTICS				
Maximum Body-Diode Continuo	us Current	Is				1.7	Α
Drain-Source Diode Forward Vo	Itage	V_{SD}	I _S =1A, V _{GS} =0V 0.75 1				

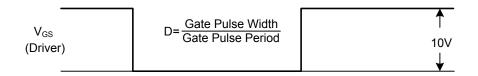
■ TEST CIRCUITS AND WAVEFORMS

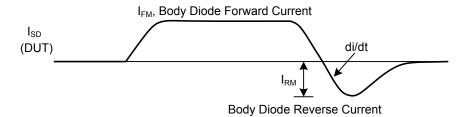


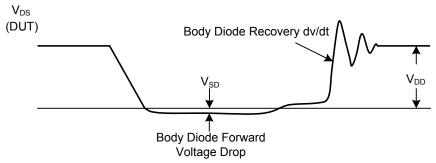

Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit



Unclamped Inductive Switching Waveforms

Peak Diode Recovery dv/dt Test Circuit and Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

