

UNISONIC TECHNOLOGIES CO., LTD

UT7430

Preliminary

30V, 34A N-CHANNEL ENHANCEMENT MODE POWER MOSFET

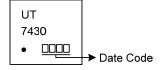
DESCRIPTION

The UTC **UT7430** is an N-Channel MOSFET, it uses UTC's advanced technology to provide customers with a minimum on-state resistance, high switching speed and low gate charge.

The UTC **UT7430** is suitable for general purpose applications and high side switch in SMPS.

FEATURES

- * R_{DS(ON)}<12mΩ @ V_{GS}=10V, I_D=20A
- $R_{DS(ON)}$ <16m Ω @ V_{GS}=4.5V, I_D=20A
- * Low gate charge
- * High switching speed



ORDERING INFORMATION

Ordering Number	Deekere	Pin Assignment						Dealing		
Ordering Number	Package	1	2	3	4	5	6	7	8	Packing
UT7430G-K08-3030-R	DFN-8(3×3)	S	S	s	G	D	D	D	D	Tape Reel
Note: Pin Assignment: G: Gate D: Drain	S: Source									

(2)Pa	cking Type ckage Type	(1) R: Tape Reel (2) K08-3030: DFN-8(3×3)
(3)Gr	een Package	(3) G: Halogen Free and Lead Free

MARKING

ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise noted)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	30	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current	Continuous	T _C =25°C		34	А
	Continuous	T _C =100°C	I _D	21	А
	Pulsed (Note	Pulsed (Note 3)		80	А
Continuous Drain Current (Note 1) $\frac{T_A=25^{\circ}C}{T_A=70^{\circ}C}$		T _A =25°C	I _{DSM}	13	А
		T _A =70°C		10.2	А
Avalanche Current (Note 3)		I _{AR}	22	А	
Repetitive Avalanche Energy L=0.1mH (Note 3)		E _{AR}	24	mJ	
Power Dissipation (Note 2) $\frac{T_{C}=25^{\circ}C}{T_{C}=100^{\circ}C}$		P	23	W	
		T _C =100°C	PD	9	W
Power Dissipation (Note 1) $\frac{T_A=25^{\circ}C}{T_A=70^{\circ}C}$			3.1	W	
		T _A =70°C	P _{DSM}	2	W
Junction Temperature		TJ	-55~+150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

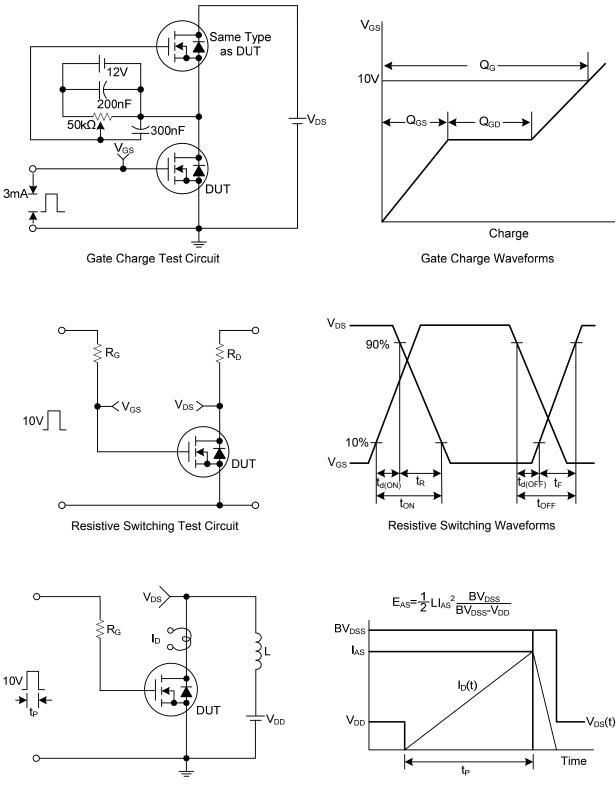
THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient (Note 1)	θ _{JA}		60	75	°C/W
Junction to Case (Note 2)	θ _{JC}		4.5	5.4	°C/W

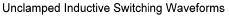
Notes: 1. The value of θ_{JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.

 The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

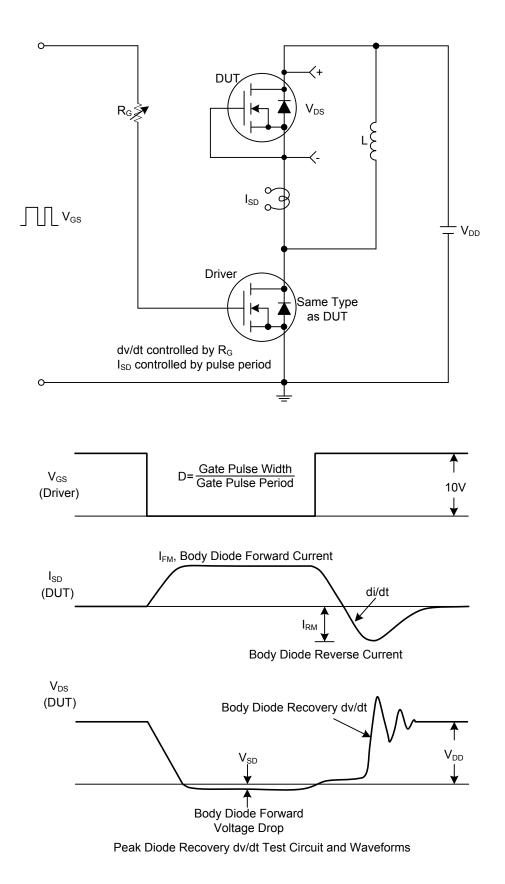
3. Repetitive rating, pulse width limited by junction temperature $T_{J (MAX)}$ =150°C.



■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	30			V		
Drain-Source Leakage Current		I _{DSS}	V _{DS} =30V, V _{GS} =0V			1	μA		
Cata Cauraa Laakana Currant	Forward		V _{GS} =+20V, V _{DS} =0V			100	nA		
Gate-Source Leakage Current	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			100	nA		
ON CHARACTERISTICS									
Gate Threshold Voltage		V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.5	1.9	2.5	V		
		Б	V _{GS} =10V, I _D =20A		10	12	mΩ		
Static Drain-Source On-Resista	nce	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A		13	16	mΩ		
Forward Transconductance		g fs	V _{DS} =5V, I _D =20A		45		S		
On State Drain Current		I _{D(ON)}	V_{GS} =10V, V_{DS} =5V	80			Α		
DYNAMIC PARAMETERS									
Input Capacitance Output Capacitance Reverse Transfer Capacitance		CISS			760		pF		
		C _{OSS}	V _{GS} =0V, V _{DS} =15V, f=1.0MHz		125		рF		
		C _{RSS}			70		pF		
Gate Resistance		R _G	V _{GS} =0V, V _{DS} =0V, f=1MHz	0.8	1.6	2.4	Ω		
SWITCHING PARAMETERS									
Total Gate Charge		Q_G	V_{GS} =4.5V, V_{DS} =15V, I_{D} =20A		6.6		nC		
Total Gate Charge		Q_G			14		nC		
Gate to Source Charge		Q_{GS}	V_{GS} =10V, V_{DS} =15V, I_{D} =20A		2.4		nC		
Gate to Drain Charge		Q_{GD}			3		nC		
Turn-ON Delay Time Rise Time Turn-OFF Delay Time Fall-Time		t _{D(ON)}			4.4		ns		
		t _R	V_{GS} =10V, V_{DS} =15V, R _L =0.75 Ω ,		9		ns		
		t _{D(OFF)}	R _{GEN} =3Ω		17		ns		
		t _F			6		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuo	ous	L.				25	А		
Current		I _S				20	~		
Drain-Source Diode Forward Voltage		V_{SD}	I _S =1A, V _{GS} =0V		0.7	1	V		

TEST CIRCUITS AND WAVEFORMS



Unclamped Inductive Switching Test Circuit Uncla

■ TEST CIRCUITS AND WAVEFORMS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

