

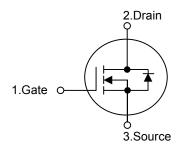
UTC UNISONIC TECHNOLOGIES CO., LTD

UF640V

Power MOSFET

18A, 200V, 0.180HM, **N-CHANNEL POWER MOSFET**

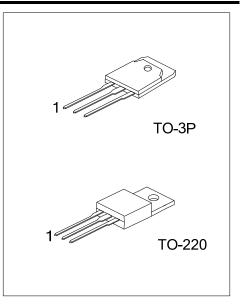
DESCRIPTION


These kinds of n-channel power MOSFET field effect transistor have low conduction power loss, high input impedance, and high switching speed, Linear Transfer Characteristics, so can be use in a variety of power conversion applications.

The UF640V suitable for resonant and PWM converter topologies.

FEATURES

- * $R_{DS(ON)} = 0.18 \Omega @V_{GS} = 10 V.$
- * Ultra Low gate charge (typical 43nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 100 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness


SYMBOL

ORDERING INFORMATION

Ordering Number		Deelvere	Pin Assignment			Decking	
Lead Free	Halogen-Free	Package	1	2	3	Packing	
UF640VL-T3P-T	UF640VG-T3P-T	TO-3P	G	D	S	Tube	
UF640VL-TA3-T	UF640VG-TA3-T	TO-220	G	D	S	Tube	

UF640VL-T3P-T (1)Packing Type (2)Package Type (3)Lead Free	(1) T: Tube (2) T3P: TO-3P, TA3: TO-220 (3) L: Lead Free, G: Halogen Free
---	---

Power MOSFET

ABSOLUTE MAXIMUM RATING (T_c = 25°C, unless otherwise specified)

	(10 2			
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	200	V
Drain-Gate Voltage (R _{GS} =20kΩ)		V _{DGR}	200	V
Gate-Source Voltage		V _{GSS}	±20	V
Continuous Drain Current			18	А
Pulsed Drain Current (Note 2)		I _{DM}	72	А
Single Pulse Avalanche Energy R	e Avalanche Energy Rating (Note 2) E _{AS}		580	mJ
Martine Davida Dia dia atian	TO-3P	P _D	150	W
Maximum Power Dissipation	TO-220		123	W
Junction Temperature	Inction Temperature		+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. L=3.37mH, V_{DD} =50V, R_G=25 Ω , peak I_{AS}=18A, starting T_J=25°C.
- 3. Pulse width limited by $T_{J(MAX)}$

THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-3P	0	50	°C/W	
	TO-220	220 θ _{JA}	62.5		
Junction to Case	TO-3P	0	0.833	°C/W	
	TO-220	θ _{JC}	1.01	C/W	

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS	STNDOL				IVIAA	UNIT
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250µA, V _{GS} =0V	200			V
Drain-Source Leakage Current		V_{DS} = Rated BV _{DSS} , V_{GS} = 0V			25	μA
	I _{DSS}				±100	nA
Gate-Source Leakage Current	I _{GSS}	V _{GS} = ±20V			±100	ΠA
ON CHARACTERISTICS	1/		10		2.5	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS}$, $I_D=250\mu A$	1.0	0.14		
Drain-Source On Resistance	R _{DS(ON)}	I _D =10A, V _{GS} =10V		0.14	0.18	Ω
			1	4075		
Input Capacitance	CISS			1275		pF
Output Capacitance	C _{OSS}	_V _{DS} =25V, V _{GS} =0V, f=1MHz		400		pF
Reverse Transfer Capacitance	C _{RSS}			100		pF
SWITCHING PARAMETERS			1			
Turn-ON Delay Time	t _{D(ON)}	V _{DD} =100V,I _D ≈18A,		13	21	ns
Turn-ON Rise Time	t _R	$R_{G}=9.1\Omega, R_{L}=5.4\Omega,$		50	77	ns
Turn-OFF Delay Time	t _{D(OFF)}	MOSFET Switching Times are		46	68	ns
Turn-OFF Fall-Time	t _F	Essentially Independent of Operating Temperature		35	54	ns
Total Gate Charge	Q _{G(TOT)}	V _{GS} =10V, I _D ≈18A, V _{DS} =0.8 x Rated		43	64	nC
Gate Source Charge	Q_{GS}	BV _{DSS} Gate Charge is Essentially		8		nC
Gate Drain Charge	Q_{GD}	Independent of Operating Temperature I _{G(REF)} = 1.5mA		22		nC
SOURCE TO DRAIN DIODE SPECI	FICATIONS			•	•	
Diode Forward Voltage (Note)	V _{SD}	T _J =25°C, I _S =18A, V _{GS} =0V,			2.0	V
Continuous Source Current (body diode)	Is	Integral Reverse p-n Junction Diode in the MOSFET			18	А
Pulse Source Current (body diode) (Note)	I _{SM}	Gateo			72	A
Reverse Recovery Time	t _{rr}	T _J =25°C, I _S =18A, dI _S /dt=100A/µs	120	240	530	ns
Reverse Recovery Charge	Q _{RR}	T _J =25°C, I _S =18A, dI _S /dt=100A/µs	1.3	2.8	5.6	μC

■ ELECTRICAL CHARACTERISTICS (T_c = 25°C, unless otherwise specified)

Note: Pulse Test: Pulse width \leq 300µs, duty cycle \leq 2%.

UF640V

TEST CIRCUIT

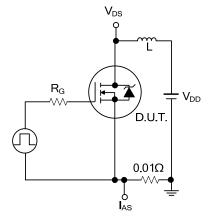
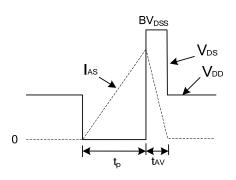



Fig. 1 Unclamped Energy Test Circuit

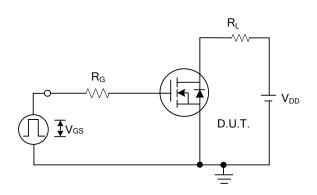


Fig.3 Switching Time Test Circuit

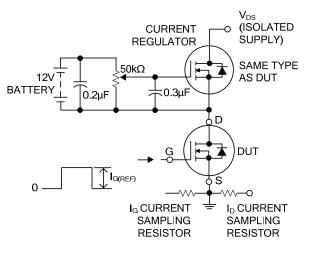


Fig.5 Gate Charge Test Circuit

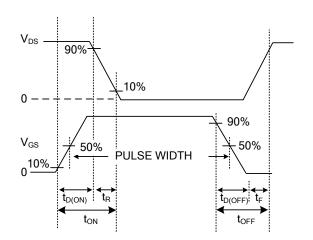


Fig.4 Resistive Switching Waveforms

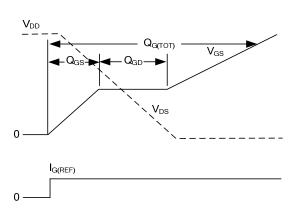
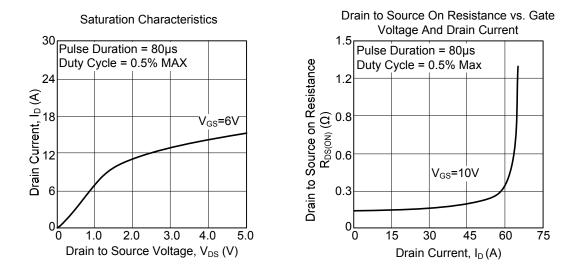



Fig.6 Gate Charge Waveforms

UF640V

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

