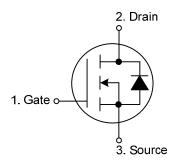
UNISONIC TECHNOLOGIES CO., LTD

25N20 **Power MOSFET**

25A, 200V N-CHANNEL **ENHANCEMENT MODE POWER MOSFET**

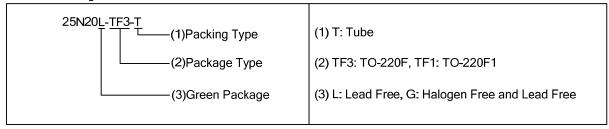
DESCRIPTION

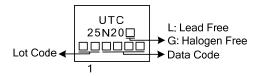

The UTC 25N20 is an N-channel enhancement mode power MOSFET and it uses UTC's perfect technology to provide designers with fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

It is generally suitable for all commercial-industrial applications and DC/DC converters requiring low voltage.

FEATURES

- * $R_{DS(ON)}$ < 160 m Ω @ V_{GS} =10V, I_{D} =16A
- * Single Drive Requirement
- * Low Gate Charge
- * RoHS Compliant


SYMBOL


ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
25N20L-TF3-T	25N20G-TF3-T	TO-220F	G	D	S	Tube	
25N20L-TF1-T	25N20G-TF1-T	TO-220F1	G	D	S	Tube	

Note: Pin Assignment: G: Gate S: Source D: Drain

MARKING

TO-220F TO-220F1

www.unisonic.com.tw 1 of 4

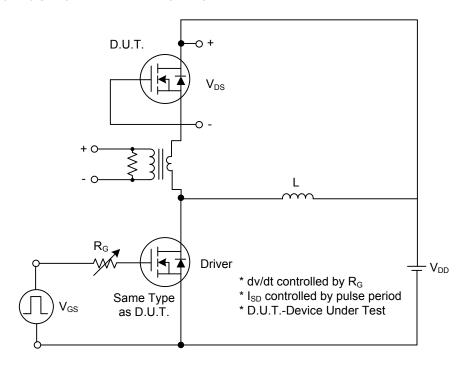
■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain Source Voltage		V_{DSS}	200	V	
Gate Source Voltage		V_{GSS}	±20	V	
Continuous Drain Current	T _C =25°C	I _D	25	Α	
(V _{GS} =10V)	T _C = 100°C	I _D	15.86	Α	
Pulsed Drain Current (Note 2)		I _{DM}	80	Α	
Total Power Dissipation (T _C =25°C)		P _D	50	W	
Operating Junction Temperature		TJ	-55 ~ +150	°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

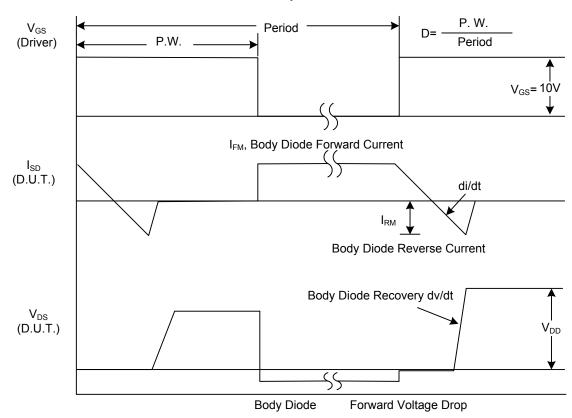
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT		
Junction to Ambient	θ_{JA}	62.5	°C/W		
Junction to Case	$\theta_{ m JC}$	2.5	°C/W		

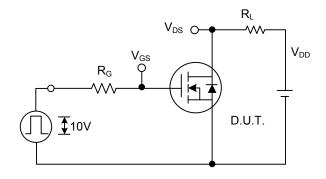

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS				ā.					
Drain-Source Breakdown Voltage	BV_{DSS}	$V_{GS} = 0V, I_D = 250 \mu A$	200			V			
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{J}$	Reference to 25°C , I _D =1mA		0.14		V/°C			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =100V, V _{GS} =0V, T _J =25°C V _{DS} =80V, V _{GS} =0V,T _J =150°C			1 100	μA μA			
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V			±100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V			
Static Drain-Source On-Resistance (Note)	R _{DS(ON)}	V _{GS} =10V, I _D =16A		112	160	mΩ			
Forward Transconductance	g FS	V _{DS} =10V, I _D =16A		14		S			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}			1000	1700	pF			
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		240		рF			
Reverse Transfer Capacitance	C_{RSS}	7		25		pF			
SWITCHING PARAMETERS									
Turn-ON Delay Time ¹	$t_{D(ON)}$			56		ns			
Turn-ON Rise Time	t_R	V_{DD} =30V, I_{D} =0.5A, R_{G} =25m Ω ,		75		ns			
Turn-OFF Delay Time	t _{D(OFF)}	V_{GS} =10V, R_{D} =3.125 Ω		240		ns			
Turn-OFF Fall-Time	t_{F}			100		ns			
Total Gate Charge (Note)	Q_{G}			35	40	nC			
Gate Source Charge	Q_{GS}	V _{GS} =10V, V _{DS} =50V, I _D =1.3A		8		nC			
Gate Drain Charge	Q_GD			9.7		nC			
SOURCE- DRAIN DIODE RATINGS AND C	HARACTERIS	STICS							
Drain-Source Diode Forward Voltage (Note)	V_{SD}	I _S =25A, V _{GS} =0V			1.3	V			
Reverse Recovery Time	t _{RR}	I _S =25A,V _{GS} =0V,		90		ns			
Reverse Recovery Charge	Q_{RR}	dI/dt=100A/μs		380		nC			


Note: Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%.

^{2.} Pulse width limited by max. junction temperature.

■ TEST CIRCUITS AND WAVEFORMS



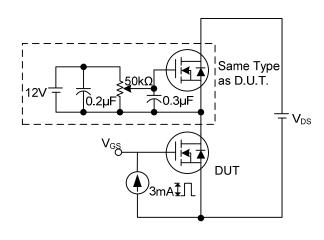
Peak Diode Recovery dv/dt Test Circuit

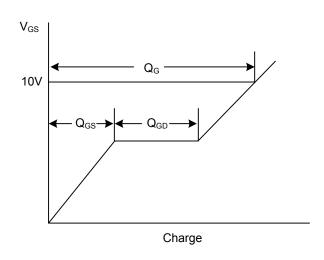
Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

V_{DS} 90%

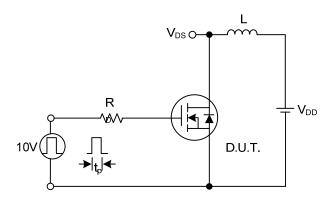
V_{GS} 10%

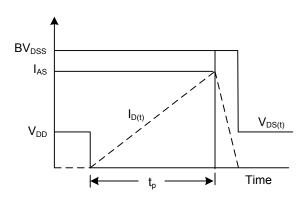

t_{D(ON)}


t_R → |

t_R + t_F →

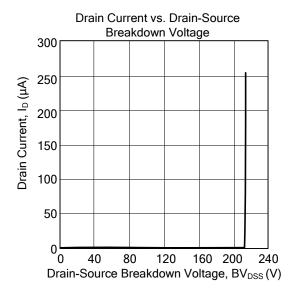
Switching Test Circuit

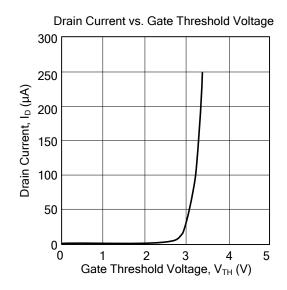

Switching Waveforms

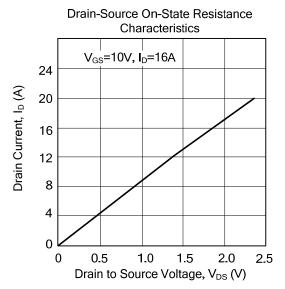


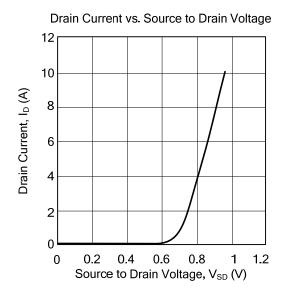
Gate Charge Test Circuit

Gate Charge Waveform






Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.