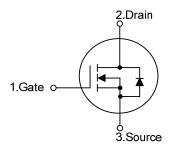


UNISONIC TECHNOLOGIES CO., LTD

13N50K-MT **Power MOSFET Preliminary**

13A, 500V N-CHANNEL POWER MOSFET

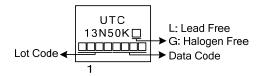
DESCRIPTION


The UTC 13N50K-MT is an N-Channel enhancement mode power MOSFET. The device adopts planar stripe and uses DMOS technology to minimize and provide lower on-state resistance and faster switching speed. It can also withstand high energy pulse under the avalanche and commutation mode conditions.

The UTC 13N50K-MT is ideally suitable for high efficiency switch mode power supply, power factor correction, electronic lamp ballast based on half bridge topology.

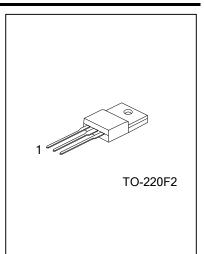
- * $R_{DS(ON)}$ < 0.41 Ω @ V_{GS} = 10V, I_D = 6.5 A
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness

SYMBOL



ORDERING INFORMATION

	Ordering Number		Dookogo	Pin Assignment			Dooking	
	Lead Free	Halogen Free	Package	1	2	3	Packing	
	13N50KL-TF2-T	13N50KG-TF2-T	TO-220F2	G	D	S	Tube	
ı	Note: Pin Assignment: G: Ga	te D: Drain S: Source			•			


13N50KL-TF2-T (1)Packing Type (1) T: Tube (2)Package Type (2) TF2: TO-220F2 (3) Green Package (3) L: Lead Free, G: Halogen Free and Lead Free

MARKING

www.unisonic.com.tw 1 of 5 QW-R502-B09.d

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage	V_{DSS}	500	V	
Gate-Source Voltage	V_{GSS}	±30	V	
Continuous Drain Current	I _D	13	Α	
Pulsed Drain Current (Note 2)	I _{DM}	52	Α	
Avalanche Current (Note 2)	I _{AR}	13	Α	
Single Pulsed Avalanche Energy (Note 3)	E _{AS}	625	mJ	
Peak Diode Recovery dv/dt (Note 4)	dv/dt	4.5	V/ns	
Power Dissipation (T _C =25°C)	P_{D}	35	W	
Junction Temperature	TJ	+150	°C	
Storage Temperature	T _{STG}	-55~+150	°C	

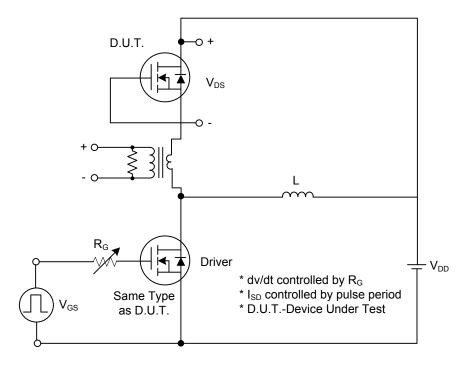
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating : Pulse width limited by maximum junction temperature
- 3. L = 7.39mH, I_{AS} = 13A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. $I_{SD} \le 13.A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C

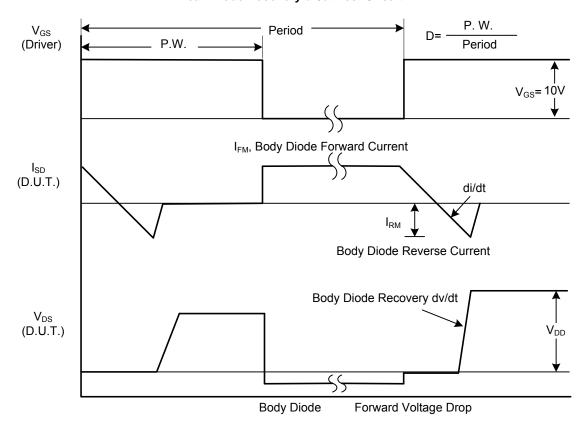
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	3.58	°C/W	

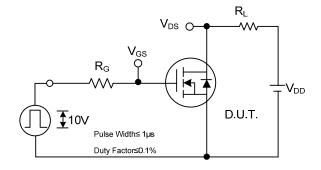
■ **ELECTRICAL CHARACTERISTICS** (T_C =25°C, unless otherwise specified)

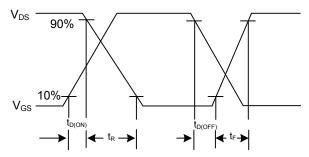

PARAMETER	SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	500			V		
Drain-Source Leakage Current	I _{DSS}	$V_{DS} = 500V, V_{GS} = 0V$			10	μΑ		
ata Sauraa Laakaga Currant	I _{GSS}	$V_{GS} = 30V, V_{DS} = 0V$			100	nA		
Gate-Source Leakage Current		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA		
Breakdown Voltage Temperature Coefficient	$\triangle BV_{DSS}/\triangle T_{J}$	I _D =250mA,Referenced to 25°C		0.5		V/°C		
ON CHARACTERISTICS	_							
Gate Threshold Voltage	$V_{GS(TH)}$ $V_{DS} = V_{GS}$, $I_D = 250\mu A$		2.0		4.0	V		
Static Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 6.5A$		0.35	0.41	Ω		
DYNAMIC CHARACTERISTICS								
Input Capacitance	C _{ISS})/ OF)/)/ O)/		875		pF		
Output Capacitance	Coss	−V _{DS} =25V, V _{GS} =0V, −f=1.0MHz		177		pF		
Reverse Transfer Capacitance	C _{RSS}			11.5		pF		
SWITCHING CHARACTERISTICS								
Turn-On Delay Time	t _{D(ON)}	V_{DS} =30V, I_{D} =0.5A, R_{G} =25 Ω (Note 1, 2)		88		nS		
Turn-On Rise Time	t _R			134		nS		
Turn-Off Delay Time	t _{D(OFF)}			190		nS		
Turn-Off Fall Time	t _F			120		nS		
Total Gate Charge	Q_{G}			38.6		nC		
Gate-Source Charge	Q _{GS}	V_{GS} =10V, V_{DS} =50V, I_{D} =1.3A		11		nC		
Gate-Drain Charge	Q_{GD}	(Note 1, 2)		10.5		nC		
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} = 0V, I _S = 13 A			1.4	V		
Maximum Continuous Drain-Source Diode	I _S				40	_		
Forward Current					13	Α		
Maximum Pulsed Drain-Source Diode	1				52	^		
Forward Current	I _{SM}				52	Α		

Notes: 1. Pulse Test : Pulse width≤300µs, Duty cycle≤2%

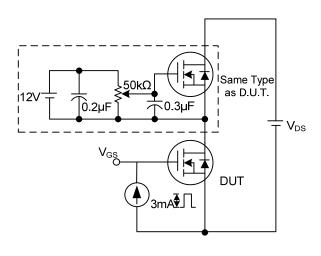

2. Essentially independent of operating ambient temperature

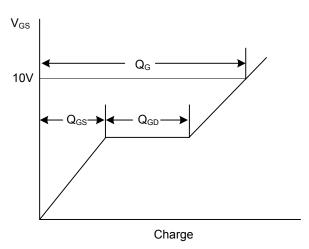
■ TEST CIRCUITS AND WAVEFORMS



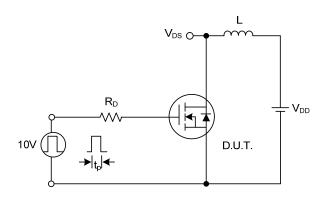

Peak Diode Recovery dv/dt Test Circuit

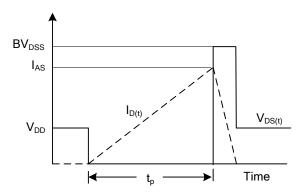
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

