

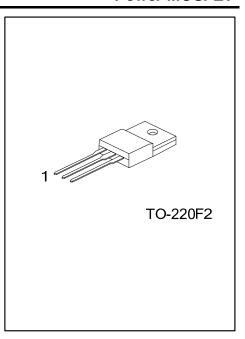
UNISONIC TECHNOLOGIES CO., LTD

20N40K-MT

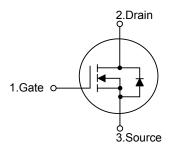
Preliminary

Power MOSFET

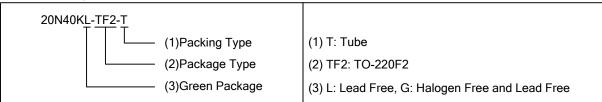
20A, 400V N-CHANNEL POWER MOSFET

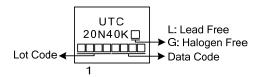

■ DESCRIPTION

The UTC **20N40K-MT** is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology allows a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.


The UTC **20N40K-MT** is generally applied in high efficiency switch mode power supplies.

^{*} $R_{DS(ON)}$ < 0.22 Ω @ V_{GS} = 10V, I_{D} = 10A


■ SYMBOL


■ ORDERING INFORMATION

Ordering	Dealtage	Pin	Dooking				
Lead Free	Halogen Free	Package	1	2	3	Packing	
20N40KL-TF2-T	20N40KG-TF2-T	TO-220F2	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.unisonic.com.tw 1 of 5

^{*} High Switching Speed

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT	
Drain-Source Voltage			V_{DSS}	400	V	
Gate-Source Voltage			V_{GSS}	±30	V	
Drain Current	Continuous	T _C =25°C	I _D	20	Α	
Drain Current	Pulsed (Note 2)		I _{DM}	80	Α	
Avalanche Current (Note 2)		I _{AR}	20	Α		
Avalanche Energy Single Pulsed (Note 3)			E _{AS}	1000	mJ	
Peak Diode Recovery dv/dt (Note 4)			dv/dt	4.5	V/ns	
Power Dissipation (T _C =25°C)			D	45	W	
Derate above 25°C			P_D	0.35	W/°C	
Junction Temperature			T_J	+150	°C	
Storage Temperature			T_{STG}	-55~+150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

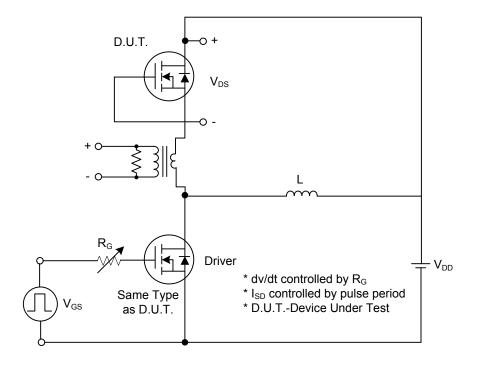
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 5.01mH, I_{AS} = 20A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. $I_{SD} \le 20A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

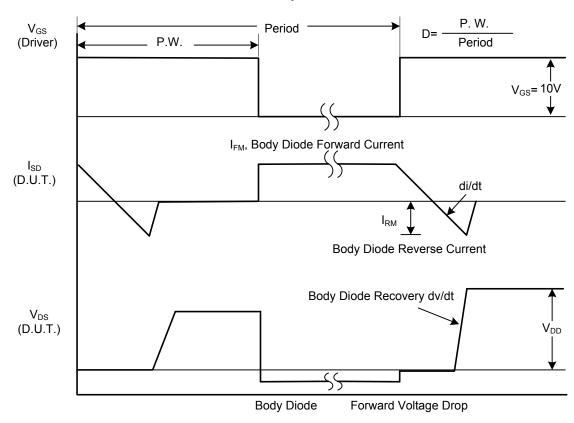
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	2.8	°C/W	

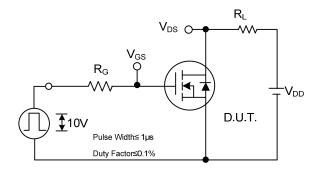
■ ELECTRICAL CHARACTERISTICS


PARAMETER		SYMBOL	TEST CONDITIONS MIN		TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage		BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	400			V		
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$	Reference to 25°C, I _D =250μA		0.5		V/°C		
Drain-Source Leakage Current		I _{DSS}	V _{DS} =400V, V _{GS} =0V			10	μΑ		
Gate- Source Leakage Current	Forward	I _{GSS}	V _{GS} =+30V, V _{DS} =0V			+100	nA		
Gate- Source Leakage Current	Reverse		V _{GS} =-30V, V _{DS} =0V			-100	nA		
ON CHARACTERISTICS									
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2.0		4.0	V		
Static Drain-Source On-State Re	sistance	R _{DS(ON)}	V _{GS} =10V, I _D =10A		0.15	0.22	Ω		
DYNAMIC PARAMETERS									
Input Capacitance		C _{ISS}			1170		pF		
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		300		pF		
Reverse Transfer Capacitance		C_{RSS}			11.9		pF		
SWITCHING PARAMETERS									
Turn-ON Delay Time		t _{D(ON)}			110		ns		
Rise Time		t_R	V_{DS} =30V, I_{D} =0.5A, R_{G} =25 Ω		190		ns		
Turn-OFF Delay Time		t _{D(OFF)}	(Note 1, 2)		372		ns		
Fall-Time		t_{F}			200		ns		
Total Gate Charge at 10V		$Q_{G(TOT)}$	\/ -10\/ \/ -50\/ \ -1 3A		57		nC		
Gate to Source Charge		Q_GS	V _{GS} =10V, V _{DS} =50V, I _D =1.3A (Note 1, 2)		15		nC		
Gate to Drain Charge		Q_GD	(Note 1, 2)		16		nC		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current		Is				20	Α		
Maximum Body-Diode Pulsed Cu	urrent	I _{SM}				80	Α		
Drain-Source Diode Forward Voltage		V_{SD}	I _{SD} =23A, V _{GS} =0V			1.5	V		

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

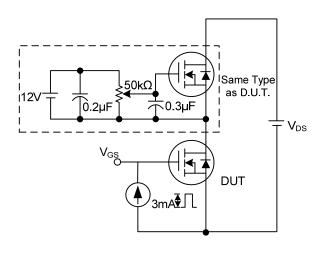

2. Essentially Independent of Operating Temperature Typical Characteristics

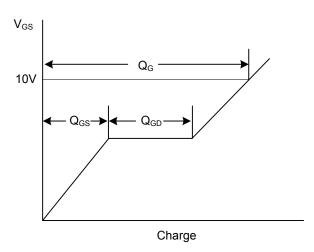
■ TEST CIRCUITS AND WAVEFORMS



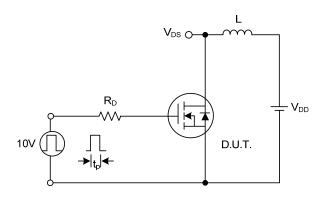
Peak Diode Recovery dv/dt Test Circuit

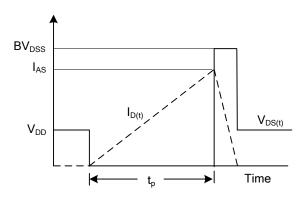
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

