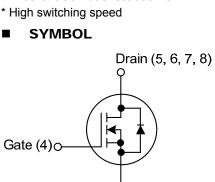
UNISONIC TECHNOLOGIES CO., LTD

UTM6006 Power MOSFET

6.3A, 60V N-CHANNEL FAST SWITCHING MOSFET

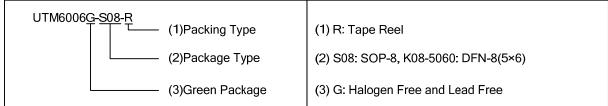

DESCRIPTION

The UTC UTM6006 is an N-Channel MOSFET, it uses UTC's advanced technology to provide customers with a minimum on-state resistance, high switching speed and low gate charge.

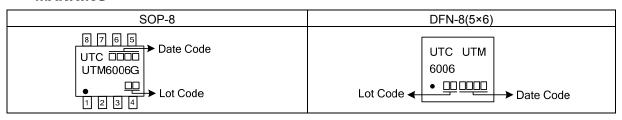
The UTC UTM6006 is suitable for application in networking DC-DC power system and LCD/LED back light, etc.

FEATURES

- * $R_{DS(ON)}$ < 18 m Ω @ V_{GS} =10V, I_D =6A $R_{DS(ON)}$ < 20 m Ω @ V_{GS} =4.5V, I_{D} =4A
- * Low gate charge
- * Excellent CdV/dt effect decline



ORDERING INFORMATION


Ordering Number	Package	Pin Assignment							Dooking	
		1	2	3	4	5	6	7	8	Packing
UTM6006G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel
UTM6006G-K08-5060-R	DFN-8(5×6)	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

Source (1, 2, 3)

MARKING

SOP-8 DFN-8(5x6)

www.unisonic.com.tw 1 of 7

ABSOLUTE MAXIMUM RATINGS

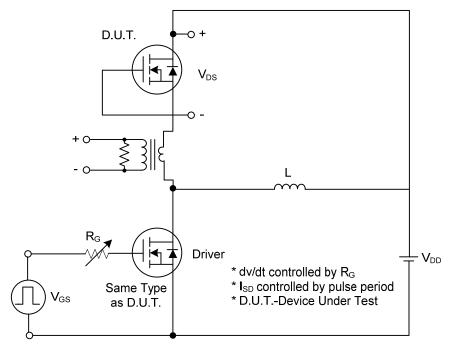
PARAMETER		SYMBOL	RATINGS	UNIT		
Drain-Source Voltage		V _{DSS}	60	V		
Gate-Source Voltage		V_{GSS}	±20	V		
Drain Current	Continuous	T _A =25°C		6.3	Α	
	V _{GS} @ 10V (Note 1)	T _A =70°C	I _D	5.0	Α	
	Pulsed (Note 2)		I _{DM}	32	Α	
Avalanche Current		I _{AS}	28	Α		
Single Pulse Avalanche Energy (Note 3)		E _{AS}	67	mJ		
SOP-8		-	1.5	14/		
Power Dissipation	Power Dissipation ($T_A=25^{\circ}C$) (Note 4) DFN-8(5×6)		P _D	1.92	W	
Junction Tempe	rature		T」 -55~+150		°C	
Storage Temperature Range		T _{STG}	-55~+150	°C		

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

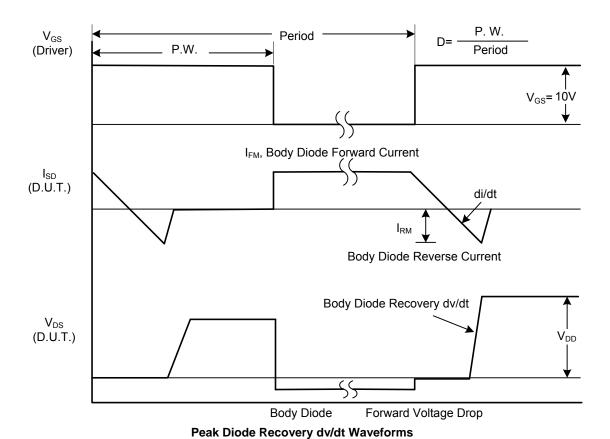
■ THERMAL CHARACTERISTICS (Note 1)

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	SOP-8	0	85	°C /\\/
	DFN-8(5×6)	θ_{JA}	65	°C/W
lunation to Coop	SOP-8	0	24	°C // //
Junction to Case	DFN-8(5×6)	θυς	12	°C/W

Notes: 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

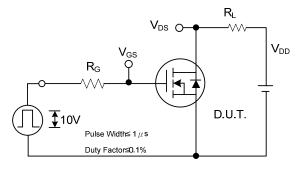

- 2. The data tested by pulsed, pulse width \leq 300 μ s, duty cycle \leq 2%.
- 3. The EAS data shows Max. rating. The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =30A.
- 4. The power dissipation is limited by 150°C junction temperature.

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise noted)

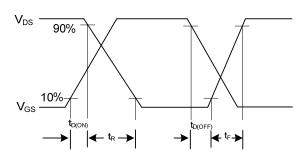

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	60			V
BV _{DSS} Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$	Reference to 25°C , I _D =1mA		0.057		V/°C
Drain-Source Leakage Current		I _{DSS}	V _{DS} =48V, V _{GS} =0V, T _J =25°C			1	μA
			V _{DS} =48V, V _{GS} =0V, T _J =55°C			5	μA
Gate-Source Leakage Current	Forward	- I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$		1.2		2.5	V
V Tamasantuna Caaffiniant			V _{DS} =V _{GS} , I _D =250μA		5.00		mV/°
V _{GS(TH)} Temperature Coefficient		△V _{GS(TH)}			-5.68		С
Static Drain-Source On-State Resistance		В	V_{GS} =10V, I_D =6A		14	18	mΩ
(Note 2)		R _{DS(ON)}	V_{GS} =4.5 V , I_D =4 A		16	20	mΩ
Forward Transconductance		g FS	V_{DS} =5V, I_D =6A		40		S
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			1070	1200	pF
Output Capacitance Reverse Transfer Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		200	220	pF
		C _{RSS}			190	210	pF
SWITCHING PARAMETERS (N	ote 2)			_			_
Total Gate Charge (4.5V) Gate to Source Charge Gate to Drain Charge		Q_G			290	310	nC
		Q_{GS}	V _{GS} =10V, V _{DS} =48V, I _D =1A		10.7	15	nC
		Q_{GD}			30	45	nC
Turn-ON Delay Time		t _{D(ON)}			55	70	ns
Rise Time		t _R	V_{GS} =10V, V_{DD} =30V,		100	120	ns
Turn-OFF Delay Time		t _{D(OFF)}	$R_G=3.3\Omega$, $I_D=2A$		580	620	ns
Fall-Time					190	210	ns
GUARANTEED AVALANCHE (CHARACT	ERISTICS			-		
Single Pulse Avalanche Energy (Note 5)		E _{AS}	V _{DD} =25V, L=0.1mH, I _{AS} =15A	19			mJ
DIODE CHARACTERISTICS							_
Continuous Source Current (Note 1, 6) Pulsed Source Current (Note 2, 6)		I _S	V =V =0V Force Current			6.3	Α
		I _{SM}	V _G =V _D =0V , Force Current			32	Α
Diode Forward Voltage (Note 2)	, , ,		V _{GS} =0V , I _S =6.3A , T _J =25°C			1	V
Reverse Recovery Time Reverse Recovery Charge		V _{SD}			15		nS
		Qrr	I _F =6A, dI/dt=100A/μs, T _J =25°C		10.4		nC
Notes 1. The detectored by surface required on a 1 inch ² FD 1 heard with 207 corner.							

- Notes: 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
 - 2. The data tested by pulsed, pulse width≤300µs, duty cycle≤2%.
 - 3. The EAS data shows Max. rating. The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =30A.
 - 4. The power dissipation is limited by 150°C junction temperature.
 - 5. The Min. value is 100% EAS tested guarantee.
 - 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

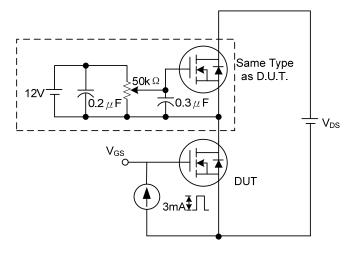
■ TEST CIRCUITS AND WAVEFORMS

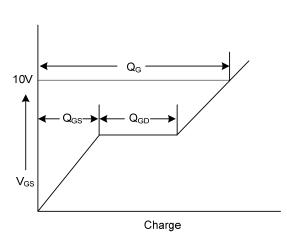


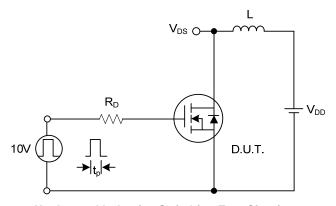
Peak Diode Recovery dv/dt Test Circuit

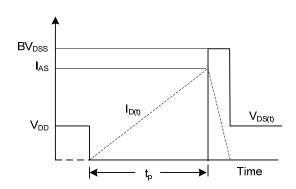


UTC UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

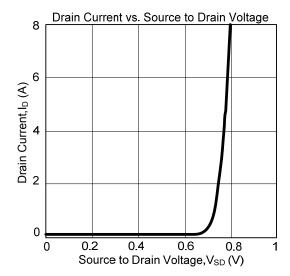

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

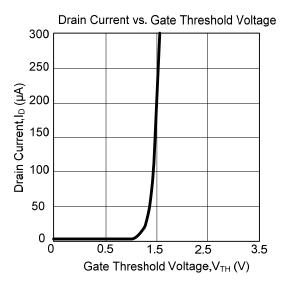

Switching Test Circuit

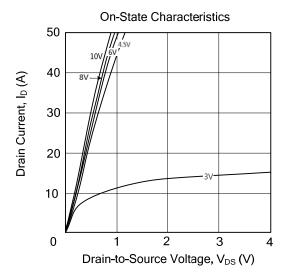

Switching Waveforms

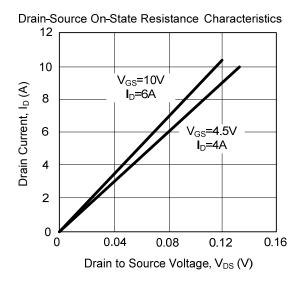

Gate Charge Test Circuit

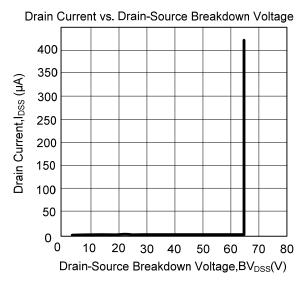
Gate Charge Waveform

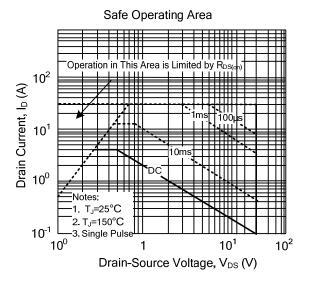


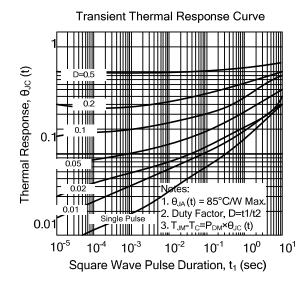

Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms


■ TYPICAL CHARACTERISTICS







■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.