

UNISONIC TECHNOLOGIES CO., LTD

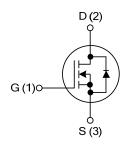
UTT2N10 Preliminary Power MOSFET

100V COMPLEMENTARY ENHANCEMENT MODE MOSFET (N-CHANNEL)

■ DESCRIPTION

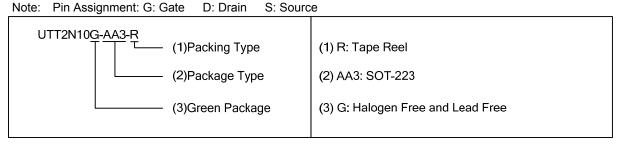
The UTC **UTT2N10** is a complementary enhancement mode MOSFET, it uses UTC advanced technology to provide customers low on resistance, low gate charge and low threshold voltage.

The UTC **UTT2N10** is universally applied in DC-AC Inverters and DC Motor control.

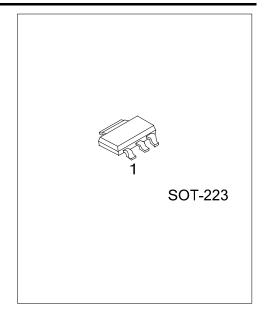

■ FEATURES

* N-CHANNEL

 $R_{DS(on)} < 0.7\Omega \text{ @V}_{GS} = 10V$ $R_{DS(on)} < 1.0\Omega \text{ @V}_{GS} = 4.5V$


* High switching speed

■ SYMBOL



Ordering Number	Package	Pin Assignment			Doolsing	
		1	2	3	Packing	
UTT2N10G-AA3-R	SOT-223	G	D	S	Tape Reel	

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 3

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

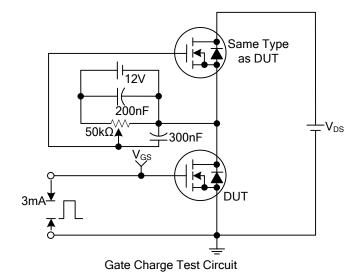
PARAMETER		SYMBOL	RATINGS	UNIT	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain-Source Voltage		V_{DSS}	100	V	
Drain Current	Continuous	V _{GS} =10V, T _A =25°C, t ≤10 sec	I _D	1	Α
	Pulsed	V _{GS} =10V, T _A =25°C (Note1)	I _{DM}	4.3	Α
Power Dissipation $ \frac{T_A=25^{\circ}C}{Derating} $		0	0.87	W	
		P _D	6.94	mW/°C	
Junction Temperature		TJ	-55~+150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

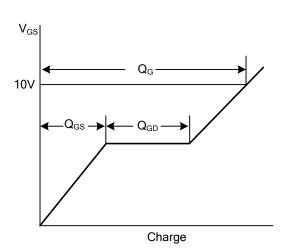
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note)	θ_{JA}	55	°C/W
Junction to Case	θις	12	°C/W

Notes: θ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

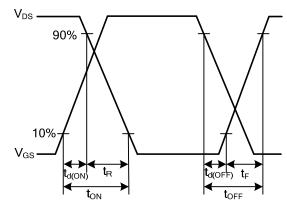

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	100			V	
Drain-Source Leakage Current		I _{DSS}	V _{DS} =100V, V _{GS} =0V			0.5	μΑ	
Gate-Source Leakage Current	Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA	
	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nΑ	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2		4	V	
Static Drain-Source On-State Resistance(Note 1)		R _{DS(ON)}	V _{GS} =10V, I _D =1.5A			0.7	Ω	
			V _{GS} =4.5V, I _D =1A			1.0	Ω	
DYNAMIC PARAMETERS								
Input Capacitance (Note 3)	out Capacitance (Note 3)				220		pF	
Output Capacitance (Note 3)		Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		33		pF	
Reverse Transfer Capacitance (Note 3)		C_{RSS}			17		pF	
SWITCHING PARAMETERS								
Total Gate Charge (Note 3)		Q_G			21		nC	
Gate to Source Charge (Note 3)		Q_GS	V_{GS} =10V, V_{DS} =50V, I_{D} =1A		2		nC	
Gate to Drain Charge (Note 3)	e to Drain Charge (Note 3)				1.5		nC	
Turn-ON Delay Time (Note 2, 3)		t _{D(ON}			25.6		ns	
Rise Time (Note 2, 3)		t_R	V _{DD} =30V, I _D =1A, R _G ≈6Ω,		16		ns	
Turn-OFF Delay Time (Note 2, 3)		t _{D(OFF)}	V _{GS} =10V		55		ns	
Fall-Time (Note 2, 3)		$t_{\scriptscriptstyle{F}}$			13		ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous Current		Is	T _A =25°C (Note 2)			1	Α	
Maximum Body-Diode Pulsed Current		I _{SM}	T _A =25°C (Note 3)			4.3	Α	
Drain-Source Diode Forward Voltage (Note 1)		V_{SD}	I _S =1.5A, V _{GS} =0V			0.95	٧	

Notes: 1. Measured under pulsed conditions. Pulse width ≤ 300µs; duty cycle ≤ 2%


- 2. Switching characteristics are independent of operating junction temperature
- 3. For design aid only, not subject to production testing

■ TEST CIRCUITS AND WAVEFORMS



Gate Charge Waveforms

Resistive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.