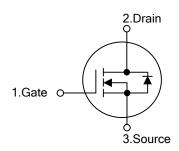


UNISONIC TECHNOLOGIES CO., LTD

UF3808 **Preliminary POWER MOSFET**

140A, 75V N-CHANNEL POWER MOSFET

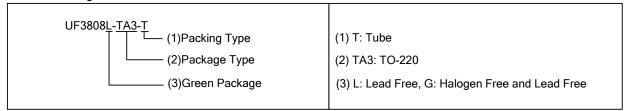
DESCRIPTION

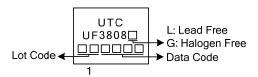

The UTC UF3808 is an N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance.

The UTC UF3808 is suitable for Automotive applications and Anti-lock Braking System (ABS), etc.

FEATURES

- * $R_{DS(ON)}$ <8.0m Ω @ V_{GS} =10V
- * High Switching Speed
- * Dynamic dv/dt Rating


SYMBOL


ORDERING INFORMATION

Ordering Number		Deekees	Pin Assignment			Daaldaa	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UF3808L-TA3-T UF3808G-TA3-T		TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

TO-220

www.unisonic.com.tw 1 of 6

ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	75	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current	Continuous V _{GS} =10V, T _C =25°C		140	Α
	(Note 6) $V_{GS}=10V$, $T_{C}=100$ °C	l _D	97	Α
	Pulsed (Note 5)	I _{DM}	550	Α
Avalanche Current (Note 5)		I _{AR}	82	Α
Avalanche Energy Single Pulse (Note 3)		E _{AS}	430	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	5.5	V/ns
Power Dissipation (T _C =25°C)		-	330	W
Linear Derating Factor		P_{D}	2.2	W/°C
Junction Temperature		Τ _J	-55~+175	°C
Storage Temperature Range		T _{STG}	-55~+175	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

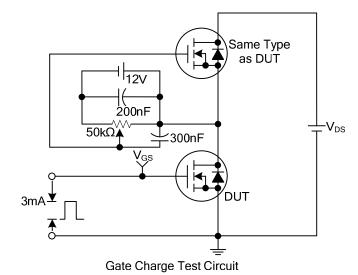
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

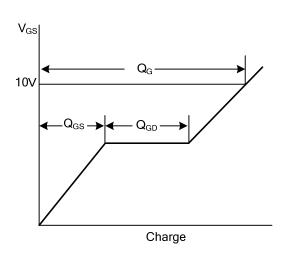
- 2. Pulse width limited by safe operating area.
- 3. L=0.13mH, I_{AS} =82A, V_{DD} =38V, R_{G} =25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 82A$, di/dt $\le 310A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$
- 5. Repetitive rating; pulse width limited by max. junction temperature.
- 6. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.

■ THERMAL DATA

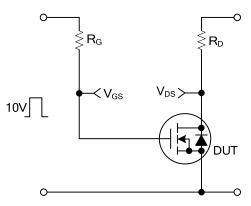
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62	°C/W
Junction to Case	θıc	0.45	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

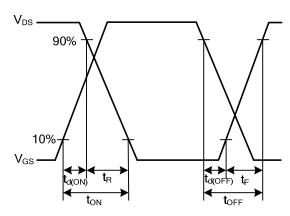

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V, I_D =250 μ A	75			V
Breakdown Voltage Temperature Coefficient	ΔBV _{DSS} /ΔT _J	Reference to 25°C, I _D =1mA		0.086		V/°C
Danier Courses Lordon Comment		V _{DS} =75V, V _{GS} =0V			20	μΑ
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V, T _J =150°C			250	μΑ
Gate-Source Leakage Current Reverse	I _{GSS}	V _{GS} =20V, V _{DS} =0V V _{GS} =-20V, V _{DS} =0V			200 -200	nA nA
ON CHARACTERISTICS	1	100 = 1, 180 + 1				1
Static Drain-Source On-State Resistance (Note 1)	R _{DS(ON)}	V _{GS} =10V, I _D =82A			8.0	mΩ
Gate Threshold Voltage	$V_{GS(TH)}$	V _{DS} =10V I _D =250μA	2.0		4.0	V
Forward Transconductance	g FS	V _{DS} =25V, I _D =82A	100			S
DYNAMIC PARAMETERS				•		•
Input Capacitance	C _{ISS}			1510		pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		780		pF
Reverse Transfer Capacitance	C _{RSS}]		350		pF
SWITCHING PARAMETERS						
Total Gate Charge	Q_{G}			138	160	nC
Gate to Source Charge	Q_{GS}	V _{GS} =10V, V _{DS} =50V, I _D =1.3A		41		nC
Gate to Drain ("Miller") Charge	Q_GD	I _G =100μA (Note 1)		27		nC
Turn-ON Delay Time	t _{D(ON)}			170		ns
Rise Time	t _R	V_{DD} =30V, I_D =1A, R_G =25 Ω		440		ns
Turn-OFF Delay Time	t _{D(OFF)}	V _{GS} =10V (Note 1)		1000		ns
Fall Time	t _F			480		ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACT	ERISTICS				
Maximum Body Diode Continuous Source Current (Note 1)	I _S				140	Α
Maximum Body-Diode Pulsed Current (Note 3)	I _{SM}				550	Α
Drain-Source Diode Forward Voltage	V_{SD}	T _J =25°C, I _S =82A, V _{GS} =0V (Note 1)			1.3	V
Body Diode Reverse Recovery Time	t _{RR}	T _J =25°C, I _F =82A, dI/dt=100A/μs		93	140	ns
Body Diode Reverse Recovery Charge	Q_{RR}	(Note 1)		340	510	nC
Natara 4 Dulas mistes 400 and state and a	•	-		-		

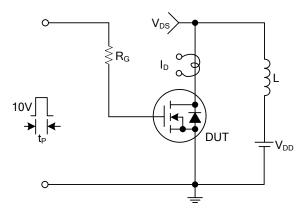

Notes: 1. Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

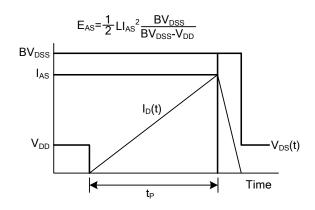
^{2.} C_{OSS} eff. is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 80% V_{DSS}


^{3.} Repetitive rating; pulse width limited by max. junction temperature.

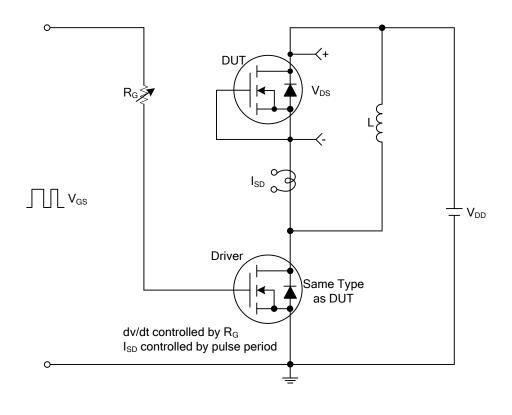
TEST CIRCUITS AND WAVEFORMS

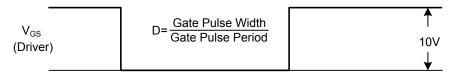


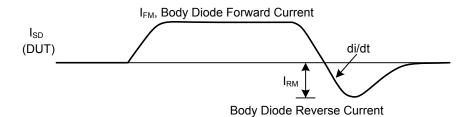

Gate Charge Waveforms

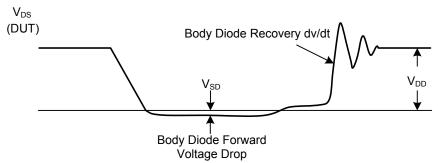


Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS

Peak Diode Recovery dv/dt Test Circuit and Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

