

UNISONIC TECHNOLOGIES CO., LTD

UT8067

Preliminary

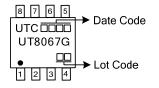
9A, 30V, N-CHANNEL MOSFET

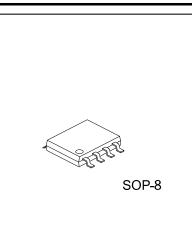
DESCRIPTION

The UTC **UT8067** is an N-channel MOSFET, it uses UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance, etc.

The UTC **UT8067** is suitable for high-efficiency DC-DC converters, mobile handsets and notebook PCs.

FEATURES


* $R_{DS(ON)}$ < 33 m Ω @ V_{GS} =4.5V, I_D =4.5A


* High switching speed

ORDERING INFORMATION

Ordering Number		Package			Pin	Dooking							
				2	3	4	5	6	7	8	Packing		
UT8067G-S08-R	SOP-8		S	S	S	G	D	D	D	D	Tape Reel		
Note: Pin Assignment: S: Source G: Gate	D: Drai	in											
UT8067 <u>G-S08</u> -R (1)Packing Type (2)Package Type (3)Green Package)8: S	e Re OP-		e an	d Le	ead F	ree				

MARKING

ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	30	V
Gate-Source Voltage		V _{GSS}	±20	V
Drain Current	Continuous (Note 1)	I _D	9	А
	Pulsed (Note 1)	I _{DM}	36	А
Avalanche Current		I _{AR}	9	А
Single Pulsed Avalanche Energy (Note 2)		E _{AS}	21	mJ
Power Dissipation (t=10s)		PD	1.0	W
Junction Temperature		TJ	150	°C
Storage Temperature Range		T _{STG}	-55~+150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature

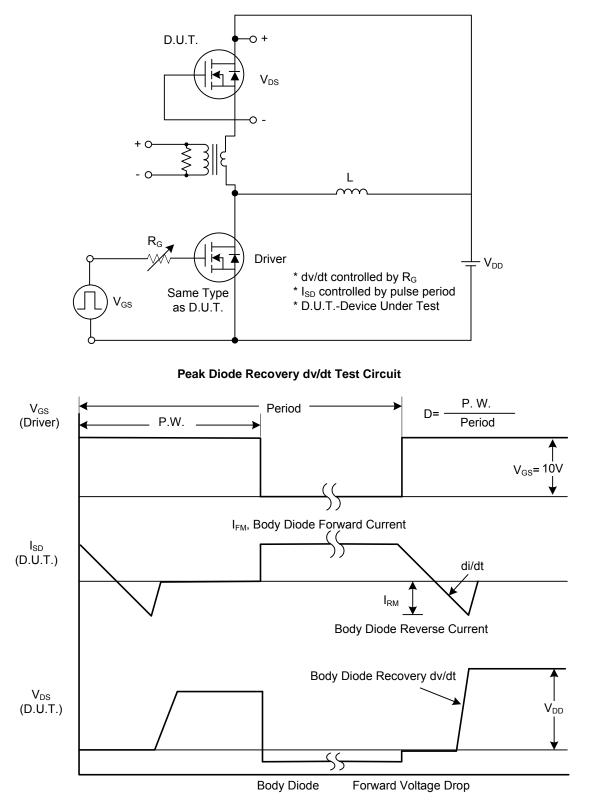
3. L = 0.2mH, I_{AS} = 9A, V_{DD} = 24V, R_G = 1.2 Ω , Starting T_J = 25°C

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT				
Junction to Ambient (t=10s)	θ_{JA}	125	°C/W				

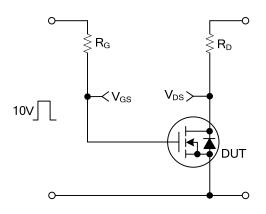
Note: Surface Mounted on 25.4 mmx25.4 mmx0.8mm FR4 Board.

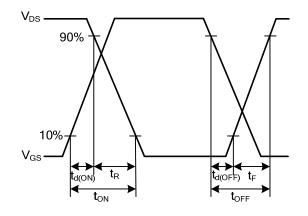
■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS				_			
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =10mA, V _{GS} =0V	30			V
		BV _{DSX}	I _D =10mA, V _{GS} =-20V	15			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =30V, V _{GS} =0V			10	μA
Gate-Source Leakage Current	Forward		V _{GS} =+20V, V _{DS} =0V			+0.1	μA
	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-0.1	μA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =10V, I _D =0.1mA	1.3		2.3	V
Static Drain-Source On-State Resistance		D	V _{GS} =4.5V, I _D =4.5A		26	33	mΩ
Static Drain-Source On-State Re	esistance	R _{DS(ON)}	V _{GS} =10V, I _D =4.5A		20	25	mΩ
DYNAMIC PARAMETERS							
Input Capacitance Output Capacitance		C _{ISS}			690		pF
		C _{OSS}	V _{GS} =0V, V _{DS} =10V, f=1.0MHz		120		pF
Reverse Transfer Capacitance		C _{RSS}			28		pF
SWITCHING PARAMETERS							
Total Gate Charge		0	V _{DD} ≈24V, V _{GS} =10V, I _D =9A		9.5		nC
		Q_{G}	V _{DD} ≈24V, V _{GS} =5V, I _D =9A		4.7		nC
Gate to Source Charge		Q _{GS}	V(~24)()(=10)(=0.0		2.2		nC
Gate to Drain Charge		Q_{GD}	−V _{DD} ≈24V, V _{GS} =10V, I _D =9A		0.9		nC
Gate Resistance		R _G	V _{GS} =0V, V _{DS} =10V, f=5MHz		3.4	5.1	Ω
Turn-ON Delay Time		t _{D(ON)}			6.7		ns
Rise Time		t _R			2.1		ns
Turn-OFF Delay Time		t _{D(OFF)}			15		ns
Fall-Time		t _F			2.1		ns
SOURCE- DRAIN DIODE RATI	NGS AND	CHARACTER	ISTICS				
Drain-Source Diode Forward Voltage		V _{SD}	I _{SD} =9A, V _{GS} =0V			-1.2	V
Continuous Drain-Source Current		I _{SD}				36	Α
Notes: 1. Pulse Test: Pulse widt	h ≤ 300us. I	Duty cycle ≤ 2	%				

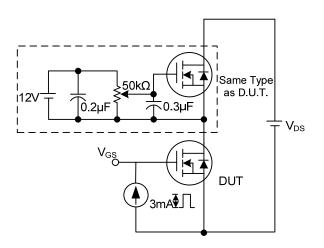
Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%

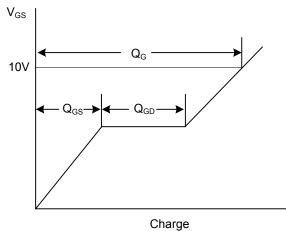
2. Essentially independent of operating temperature

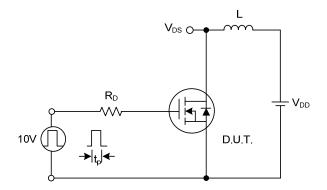

■ TEST CIRCUITS AND WAVEFORMS



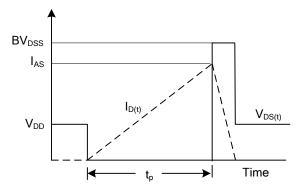
Peak Diode Recovery dv/dt Waveforms


TEST CIRCUITS AND WAVEFORMS (Cont.)




Switching Waveforms

itching Test Circuit



Unclamped Inductive Switching Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

