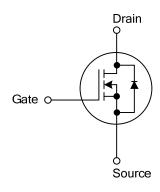
UT7422-H Preliminary Power MOSFET

40A, 30V N-CHANNEL MOSFET

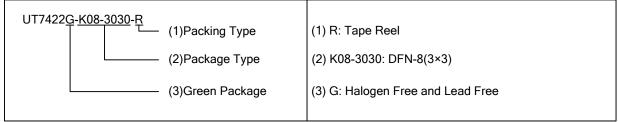
■ DESCRIPTION


The UTC **UT7422-H** is an N-channel MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on state resistance, etc.

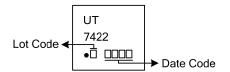
The UTC **UT7422-H** is suitable for load switch and battery protection applications.

■ FEATURES

- * $R_{DS(ON)}$ < 4.3m Ω @ V_{GS} =10V, I_{D} =20A $R_{DS(ON)}$ < 6.0m Ω @ V_{GS} =4.5V, I_{D} =16A
- * Low R_{DS(ON)}


■ SYMBOL

ORDERING INFORMATION


Ordering Number	Package	Pin Assignment							Daaliaa	
		1	2	3	4	5	6	7	8	Packing
UT7422G-K08-3030-R	DFN-8(3×3)	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

1 trees | DFN-8(3x3)

■ MARKING

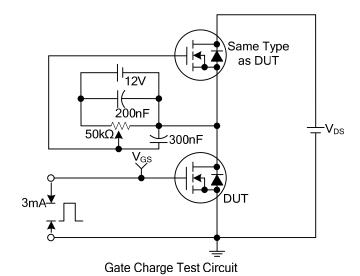
■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise noted)

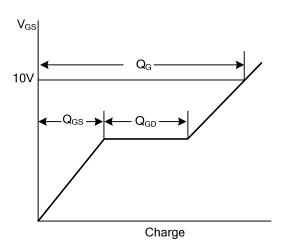
PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V_{DSS}	30	V
Gate-Source Voltage	V_{GSS}	±20	V
Continuous Drain Current (Note 6) T _C =25°C	l _D	40	Α
Pulsed Drain Current (Note 4)	I _{DM}	200	Α
Continuous Drain Current T _A =25°C	I _{DSM}	20	Α
Avalanche Current (Note 4)	I _{AS} , I _{AR}	45	Α
Avalanche Energy L=0.1mH (Note 4)	E _{AS} , E _{AR}	101	mJ
Power Dissipation (Note 3) T _C =25°C	P_{D}	36	W
Power Dissipation (Note 2) T _A =25°C	P _{DSM}	3.1	W
Junction Temperature	TJ	-55~+150	°C
Storage Temperature Range	T _{STG}	-55~+150	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

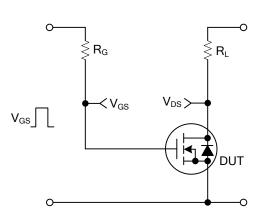
 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. The value of θ_{JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on θ_{JA} t≤10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.
 - 3. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
 - Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C.
 - 5. The θ_{JA} is the sum of the thermal impedence from junction to case θ_{JC} and case to ambient.
 - 6. The maximum current rating is package limited.

■ THERMAL CHARACTERISTICS

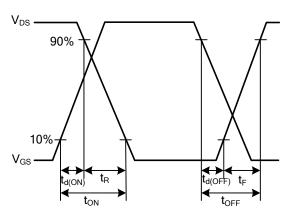

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note 2, 5)	θ_{JA}	75	°C/W
Junction-to-Case	Aic	3.4	°C/W

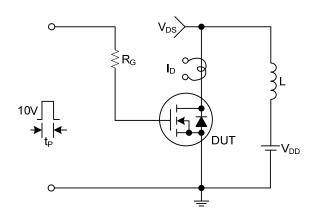

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)

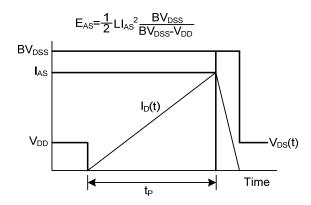
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC PARAMETERS			l.			
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	30			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V, V _{GS} =0V			1	μA
		V _{DS} =30V, V _{GS} =0V, T _J =55°C			5	μA
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.3	1.85	2.4	V
On State Drain Current	I _{D(ON)}	V _{GS} =10V, V _{DS} =5V	200			Α
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A		3.5	4.3	mΩ
		V _{GS} =10V, I _D =20A, T _J =125°C		5.5	6.8	mΩ
		V _{GS} =4.5V, I _D =16A		4.5	6	mΩ
Forward Transconductance	9 FS	V _{DS} =5V, I _D =20A		85		S
DYNAMIC PARAMETERS	<u>-</u>					
Input Capacitance	C _{ISS}		1950	2445	2940	рF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =15V, f=1.0MHz		390	510	рF
Reverse Transfer Capacitance	C_{RSS}			220	310	pF
Gate Resistance	R_{G}	V _{DS} =0V, V _{GS} =0V, f=1.0MHz	1.2	2.4	3.6	Ω
SWITCHING PARAMETERS						
Total Gate Charge	Q_G	V_{GS} =10V, V_{DS} =15V, I_{D} =20A	32	41	50	nC
Total Gate Charge	Q_G		15	19	24	nC
Gate to Source Charge	Q_GS	V_{GS} =4.5V, V_{DS} =15V, I_{D} =20A		7.2		nC
Gate to Drain Charge	Q_GD			6.6		nC
Turn-ON Delay Time	$t_{D(ON)}$			7		ns
Rise Time	t _R	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω ,		5		ns
Turn-OFF Delay Time	t _{D(OFF)}	$R_{GEN}=3\Omega$		41.5		ns
Fall-Time	t _F			10.5		ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTE	RISTICS				
Diode Forward Voltage	V_{SD}	I _S =1A,V _{GS} =0V		0.7	1	V
Maximum Body-Diode Continuous					40	
Current (Note)	Is				40	Α
Body Diode Reverse Recovery Time	t _{rr}	 I _F =20A, dI/dt=500A/μs		17.5	22	ns
Body Diode Reverse Recovery Charge	Q_{rr}	F=20A, αι/αι=300A/μ5		31	40	nC


Note: The maximum current rating is package limited.

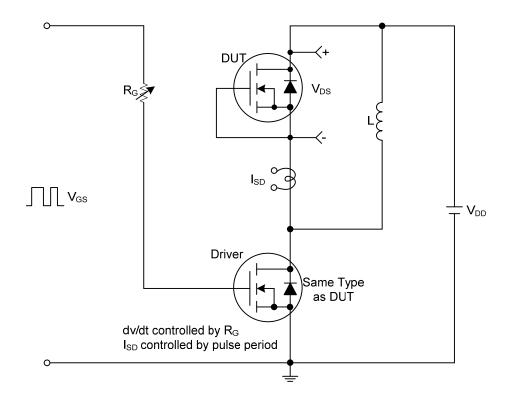
■ TEST CIRCUITS AND WAVEFORMS

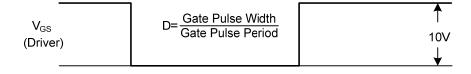


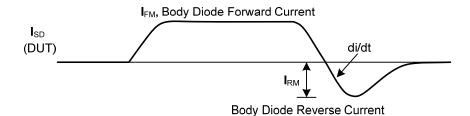

Gate Charge Waveforms

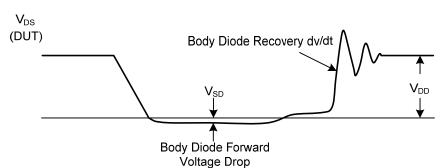

Resistive Switching Test Circuit

Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

Peak Diode Recovery dv/dt Test Circuit and Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

