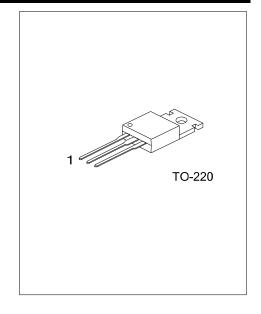
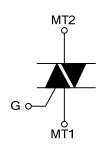


UNISONIC TECHNOLOGIES CO., LTD

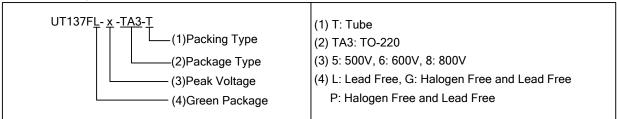

UT137F/G

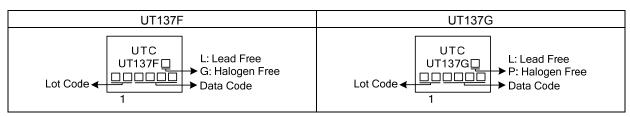
TRIAC


DESCRIPTION

Passivated triacs in a plastic envelope, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance.

Typical applications include motor control, industrial and domestic lighting, heating and static switching.


■ SYMBOL


ORDERING INFORMATION

Order Number		Dookogo	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT137FL-x-TA3-T	UT137FG-x-TA3-T	TO-220	MT1	MT2	G	Tube	
UT137GL-x-TA3-T	UT137GP-x-TA3-T	TO-220	MT1	MT2	G	Tube	

Note: Pin Assignment: G: Gate

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 6

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT	
	UT137F_G-5		500 (Note 2)	V
Repetitive peak off-state voltages	UT137F_G-6	V_{DRM}	600 (Note 2)	V
	UT137F_G-8		800	V
RMS on-state current full sine wave; T _{mb} ≤10	$I_{T(RMS)}$	8	Α	
Non-repetitive peak on-state current t = 20m			65	A
(Full sine wave; T _J = 25°C prior to surge)	t = 16.7 ms	I _{TSM}	71	A
I ² t for fusing	t = 10 ms	I ² t	21	A ² s
Repetitive rate of rise of on-state current after triggering I _{TM} =12A; I _G =0.2A; d _{IG} /dt=0.2A/µs	T2+ G+		50	A/µs
	T2+ G-	dl⊤/dt	50	A/µs
	T2- G-		50	A/µs
	T2- G+		10	A/µs
Peak gate voltage		V_{GM}	5	V
Peak gate current	I_{GM}	2	Α	
Peak gate power	P_GM	5	W	
Average gate power (over any 20 ms period	$P_{G(AV)}$	0.5	W	
Junction Temperature	T_J	125	°C	
Storage Temperature	T_{STG}	-40 ~ +150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES

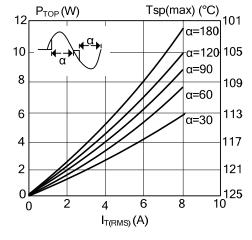
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	
Thermal resistance Junction to Ambient	In Free Air	θ_{JA}		60		°C/W
Thermal resistance Junction to mounting	Full cycle	0			2.0	°C/W
base	Half cycle	θ_{JC}			2.4	°C/W

■ STATIC CHARACTERISTICS (T_J =25°C, unless otherwise specified)

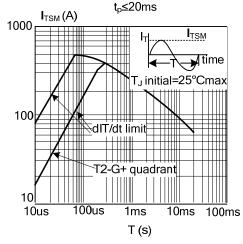
PARAMETER	SYMBOL	TEST CONDITIONS MIN		MINI	TYP	MAX		UNIT
PARAMETER	STIVIBUL			ITP	UT137F	JT137F UT137G		
	I _{GT}		T2+G+		5	25	50	mA
		V _D =12V, I _T =0.1A	T2+G-		8	25	50	
Gate Trigger Current			T2-G-		11	25	50	
			T2-G+		30	70	100	
Latching Current	IL	V _D =12V, I _{GT} =0.1A	T2+G+		7	30	45	mA
			T2+G-		16	45	60	
			T2-G-		5	30	45	
			T2-G+		7	45	60	
Holding Current	I_H	V _D =12V, I _{GT} =0.1A			5	20	40	mA
On-State Voltage	V_{T}	I _T =10A			1.3	1.65		V
Gate Trigger Voltage	V_{GT}	V _D =12V, I _T =0.1A			0.7	1.5		V
		V _D =400V, I _T =0.1A, T _J =125°C		0.25	0.4			V
Off-State Leakage Current	I_{D}	V _D =V _{DRM(max)} , T _J =125°C			0.1	0.5		mA

^{2.} Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 6A/µs.

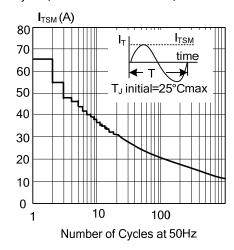
UT137F/G

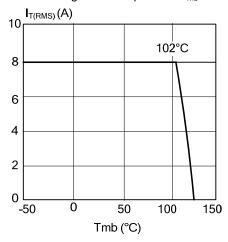

■ **DYNAMIC CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

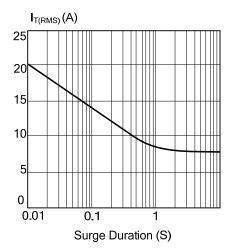
PARAMETER	SYMBOL	TEST CONDITIONS	MIN		TYP	MAY	UNIT
PARAMETER	STIVIBOL	TEST CONDITIONS	UT137F	UT137G	IIF	IVIAA	UNIT
Critical Rate Of Rise Of Off-State Voltage		V _{DM} =67% V _{DRM(max)} , T _J =125°C, Exponential waveform, gate open circuit	50	200	250		V/µs
Critical Rate Of Change Of Commutating Voltage	dV _{com} /dt	V _{DM} =400V, T _J =95°C, I _{T(RMS)} =8A, dI _{com} /dt=3.6A/ms, gate open circuit		10	20		V/µs
Gate Controlled Turn-On Time	T _{m4}	I_{TM} =12A, V_D = $V_{DRM(max)}$, I_G =0.1A, dI_G/dt =5A/ μ s			2		μs

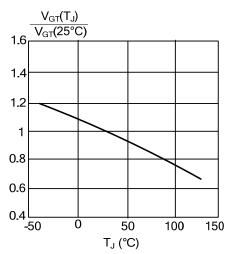

UT137F/G **TRIAC**

TYPICAL CHARACTERISTICS


Maximum On -State Dissipation. Ptot vs RMS On-State Current, $I_{T(RMS)}$, Where α =conduction Angle

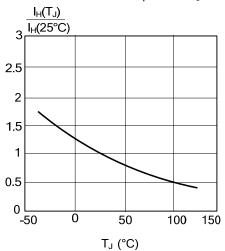

Maximum Permissible Non-Repetitive Peak On-State Current ITSM, vs Pulse Width to, for Sinusoidal Currents,


Maximum Permissible Non-Repetitive Peak On-State Current ITSM, vs Number of Cycles, for Sinusoidal Currents, f=50Hz

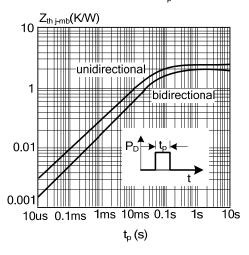

Maximum Permissible RMS Current I_{T(RMS)} vs Mounting Base Temperature T_{mb}

Maximum Permissible Repetitive RMS On-State Current $I_{T(RMS)}$, vs Surge Duration, for Sinusoidal Currents,f =50Hz, T_{mb}≤102°C

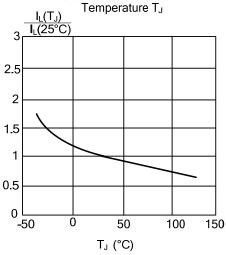
Normalised Gate Trigger Voltage $V_{GT}(T_J)/V_{GT}(25^{\circ}C)$, vs Junction Temperature T_J

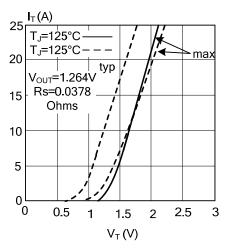


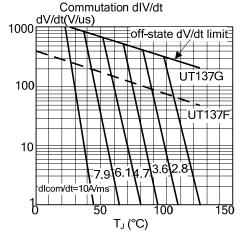
UT137F/G


■ TYPICAL CHARACTERISTICS(Cont.)

Normalised Gate Trigger Current $I_{GT}(T_J)/I_{GT}(25^{\circ}C)$, vs Junction Temperature T_J I_{GT}(25°C) T2+G+ T2+G- -----2.5 T2-G-T2-G+ 2 1.5 1 0.5 o<u>└</u> 0 50 100 150 T_J (°C)


Normalised Holding Current $I_H(T_J)/I_H(25^{\circ}C)$, vs Junction Temperature T_J


Transient Thermal Impedance $Z_{th j-mb}$, vs Pulse Width t_{p}


Normalised Latching Current I_L(T_J)/I_L(25°C), vs Junction

Typical and Maximum On-state Characteristic

Typical Commutation dV/dt Vs Junction Temperature, Parameter Commutation dI_T/dt. The Triac Should Commutate When The dV/dt Is Below The Value On The Appropriate Curve For Pre-

UT137F/G

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

