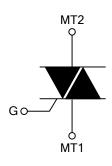


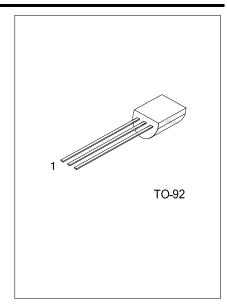
UNISONIC TECHNOLOGIES CO., LTD

Z00607

Preliminary

TRIAC

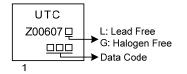

0.8A TRIAC


DESCRIPTION

The UTC **Z00607** is a 0.8A triac, it uses UTC's advanced technology to provide customers with low gate trigger current. The UTC **Z00607** is suitable for low power AC switching

applications and driving microcontrollers.

SYMBOL



ORDERING INFORMATION

Ordering Number		Deekers	Pin Assignment			Dealving	
Lead Free	Halogen Free	Package	1	2	3	Packing	
Z00607L-T92-B	Z00607G-T92-B	TO-92	MT1	GATE	MT2	Tape Box	
Z00607L-T92-K	Z00607G-T92-K	TO-92	MT1	GATE	MT2	Bulk	

Z00607 <u>Ļ-Т92</u> - <u></u>		
(1)Packing Type	(1) B: Tape Box, K: Bulk	
(2)Package Type	(2) T92: TO-92	
(3)Green Package	(3) L: Lead Free, G: Halogen Free and Lead Free	

MARKING

ABSOLUTE MAXIMUM RATINGS

PARAMETER			SYMBOL	RATINGS	UNIT
Repetitive Peak Off-State Voltage			V _{DRM}	600	V
RMS On-State Current (Full Sine Wave) T _{MB} =50°C		I _{T(RMS)}	0.8	А	
Non Repetitive Surge Peak	F=50Hz	t=20ms		9	
On-State Current (Full Cycle, TJ initial=25°C)	F=60Hz	t=16.7ms	I _{TSM}	9.5	A
I ² t Value for Fusing	t _P =10ms		I_t^2	0.45	A ² s
Critical Rate of Rise of On-State Current I _G =2×I _{GT} , t _r ≤100ns	F=120Hz	T _J =110°C	dl/dt	20	A/µs
Peak Gate Current	t _P =20µs	T _J =110°C	I _{GM}	1	А
Average Gate Power Dissipation T _J =110°C		P _{G(AV)}	0.1	W	
Operating Junction Temperature Range		ТJ	-40~+110	°C	
Storage Junction Temperature Range			T _{STG}	-40~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Lead (AC)	θ_{JLEAD}	60	°C/W
Junction to Ambient	θ _{JA}	150	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

	1			r	r	r	
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Cata Triagan Current (Nata 1)	I _{GT}		1-11-111			5	
Gate Trigger Current (Note 1)		V _D =12V, R _L =30Ω	IV			7	mA
Gate Trigger Voltage	V _{GT}		ALL			1.3	V
Gate Non-Trigger Voltage	V_{GD}	$V_D = V_{DRM}, R_L = 3.3 K\Omega,$ T _J = 110°C		0.2			V
Holding Current (Note 2)	Ι _Η	I _T =200mA				5	mA
	ΙL	I _G =1.2I _{GT}	I-III-IV			10	mA
Latching Current			II			20	
Critical Rate of Rise of Off-State	D (/ 1)	V _D =67%V _{DRM} , Gate Open, T _J =110°C		10			
Voltage (Note 2)	dV/dt			10			V/µs
Critical Rate of Rise of Off-State	(-1) ((-14) -	(dV/dt)c=0.35A/ms, T _J =110°C		4 5			N//
Voltage at Commutation (Note 2)	(dV/dt)c			1.5			V/µs
Peak On-State Voltage (Note 2)	V _{TM}	I _{TM} =1.1A, t _p =380µs	TJ=25°C			1.5	V
Threshold Voltage (Note 2)	V _{TO}		TJ=110°C			0.95	V
Dynamic Resistance (Note 2)	R _D		TJ=110°C			420	mΩ
	I _{DRM}	V _{DRM} =V _{RRM} =600V	TJ=25°C			5	μA
Repetitive Peak Off-State Current	I _{RRM}		TJ=110°C			0.1	mA

Notes: 1. Minimum I_{GT} is guaranteed at 5% of I_{GT} max.

2. For both polarities of MT2 referenced to MT1.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

