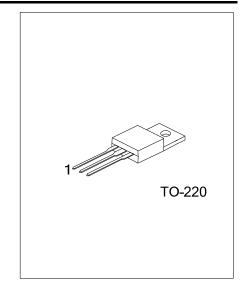


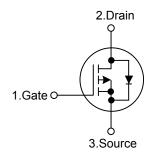
UNISONIC TECHNOLOGIES CO., LTD


UTT100P03 Preliminary Power MOSFET

100A, 30V P-CHANNEL POWER MOSFET

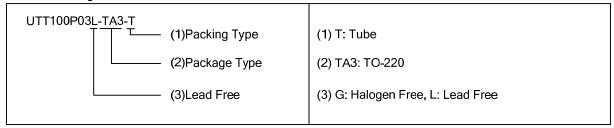
■ DESCRIPTION

The UTC **UTT100P03** is a P-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance. It can also withstand high energy in the avalanche.


The UTC **UTT100P03** is suitable for low voltage and high speed switching applications

■ FEATURES

- * $R_{DS(ON)}$ =3.3m Ω @ V_{GS} =-10V, I_D =-80A
- * High Switching Speed


■ SYMBOL

■ ORDERING INFORMATION

Ordering	Dardens	Pin Assignment			Dankina	
Lead Free	Halogen Free	Package	1	2	3	Packing
UTT100P03L-TA3-T	UTT100P03G-TA3-T	TO-220	G	D	S	Tube

Note: Pin Assignment: G: Gate D: Drain S: Source

<u>www.unisonic.com.tw</u> 1 of 3

■ **ABSOLUTE MAXIMUM RATINGS** (T_J=25°C, unless otherwise specified)

PARAMETER				SYMBOL	RATINGS	UNIT
Drain-Source Voltage				$V_{ extsf{DSS}}$	-30	V
Gate-Source Voltage				V_{GSS}	-16/+5	V
Drain Current	Continuous	T _C =25°C,	V _{GS} =-10V	I _D	-100	Α
	(Note 2)	T _C =100°C	C, V _{GS} =-10V		-100 (Note 3)	Α
	Pulsed (Note 3)		T _C =25°C	I _{DM}	-400	Α
Single Pulsed A	Single Pulsed Avalanche Energy I _D =-80A		E _{AS}	450	mJ	
Power Dissipati	ver Dissipation T _C		T _C =25°C	P_D	P _D 200	
Junction Temperature				T _J	+175	°C
Storage Temperature				T _{STG}	-55~+175	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Current is limited by bondwire; with a θ_{JC} = 0.65 °C/W the chip is able to carry I_D =-195A at 25°C.
- 3. Defined by design. Not subject to production test.

■ THERMAL DATA (Note 2)

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62	°C/W
Junction to Case	$\theta_{ m JC}$	0.65	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =-250μA, V _{GS} =0V	-30			V	
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-30V, V _{GS} =0V, T _J =25°C		-0.1	-1	μA	
			V _{DS} =-30V,V _{GS} =0V,T _C =125°C (Note 1)		-10	-100	μA	
Gate-Source Leakage Current	Forward	I _{GSS}	V _{GS} =+16V, V _{DS} =0V		+10	+100	nA	
	Reverse		V _{GS} =-16V, V _{DS} =0V		-10	-100	nA	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=-475\mu A$	-1	-1.5	-2.1	V	
Static Drain-Source On-State Resistance			V _{GS} =-4.5V, I _D =-50A		4.8	7.6	mΩ	
		R _{DS(ON)}	V _{GS} =-10, I _D =-80A		3.3	4.3	mΩ	
DYNAMIC PARAMETERS (Note	: 1)							
Input Capacitance		C _{ISS}	V _{GS} =0V, V _{DS} =-25V, f=1.0MHz		7150	9300	pF	
Output Capacitance		Coss			2150	2800	pF	
Reverse Transfer Capacitance		C _{RSS}			1650	2500	pF	
SWITCHING PARAMETERS (N	ote 1)							
Total Gate Charge		Q_G	V _{DD} =-24V, V _{GS} =0~-10V, I _D =-80A		150	200	nC	
Gate to Source Charge		Q_{GS}			25	33	nC	
Gate to Drain Charge		Q_GD			55	82.5	nC	
Turn-ON Delay Time		t _{D(ON)}			30		ns	
Rise Time		t _R	V_{DD} =-15V, V_{GS} =-10V, I_{D} =-50A, R_{G} =6 Ω		45		ns	
Turn-OFF Delay Time		t _{D(OFF)}			200		ns	
Fall-Time		t_{\scriptscriptstyleF}			180		ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous Current		I _S	T _A = 25°C (Note 1)			-100	Α	
Maximum Body-Diode Pulsed Current		I _{SM}	T _A = 25°C (Note 1)			-400	Α	
Drain-Source Diode Forward Voltage		V_{SD}	I _S =-80A, V _{GS} =0V	-0.6	-1	-1.2	V	
Body Diode Reverse Recovery Time		t _{rr}	V _R =-15V, I _F =-50A,		50		ns	
Body Diode Reverse Recovery Charge		Q_{RR}	dI _F /dt=100A/μs (Note 1)		55		nC	

Notes: 1. Defined by design. Not subject to production test.

2. Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical in still air.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

