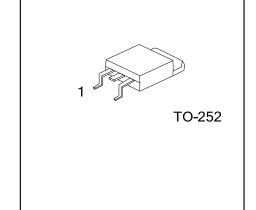


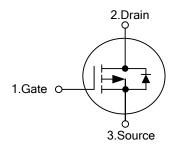
UNISONIC TECHNOLOGIES CO., LTD


UTT50P04 Preliminary Power MOSFET

-40V, -60A P-CHANNEL POWER MOSFET

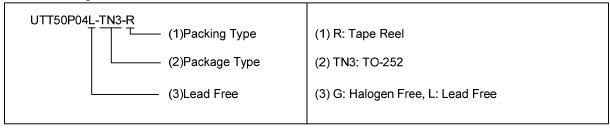
■ DESCRIPTION

The UTC **UTT50P04** is a P-channel power MOSFET using UTC's advanced technology to provide the customers with high switching speed and a minimum on-state resistance, and it can also withstand high energy in the avalanche.


This UTC **UTT50P04** is suitable for motor drivers, high-side switch and 12V board net, etc.

■ FEATURES

- * $V_{DS} = -40V$,
- * $I_D = -60A$
- * $R_{DS(ON)}$ =0.0105 Ω @ V_{GS} =-10V, I_{D} =-30A
- * High Switching Speed


■ SYMBOL

■ ORDERING INFORMATION

Ordering	Daakana	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing
UTT50P04L-TN3-R	UTT50P04G-TN3-R	TO-252	G	D	S	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 3

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	-40	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	Continuous	T _C =25°C		-60 (Note 3)	Α
	(Note 2)	T _C =100°C	I _D	-43	Α
	Pulsed		I _{DM}	-100	Α
Continuous Source Current (Diode Conduction)		Is	-60 (Note 3)	Α	
Avalanche Current		I _{AR}	-40	Α	
Avalanche Energy		E _{AS}	80	mJ	
Power Dissipation (Note 2) $\frac{T_C=25^{\circ}C}{T_A=25^{\circ}C}$		P_{D}	93.7 (Note 2)	W	
		T _A =25°C	FD	3 (Note 1)	W
Junction Temperature		T_J	-55~175	°C	
Storage Temperature		T _{STG}	-55~175	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient (Note 1)	t≤10 sec.	θ_{JA}	18	
	Steady State		50	°C/W
Junction to Case		θ_{JC}	1.6	

Notes: 1. Surface Mounted on 1"x1" FR4 Board.

- 2. See SOA curve for voltage derating.
- 3. Calculated based on maximum allowable Junction Temperature. Package limitation current is 50A.

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	I_D =-250 μ A, V_{GS} =0V	-40			V
Drain Source Leakage Current	I _{DSS}	V _{DS} =-40V, V _{GS} =0V			-1	
Drain-Source Leakage Current		V _{DS} =-40V, V _{GS} =0V , T _J =125°C			-50	μA
Gate- Source Leakage Current Forward	I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA
Reverse	igss	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1.0		-3.0	V
Static Drain-Source On-State Resistance		V _{GS} =-10V, I _D =-30A		0.0105	0.013	
(Note 1)	R _{DS(ON)}	V _{GS} =-10V, I _D =-30A, T _J =125°C			0.020	Ω
(Note 1)		V _{GS} =-4.5V, I _D =-20A		0.017	0.022	
Forward Transconductance (Note 1)	g FS	V _{DS} =-15V, I _D =-30A	15			S
On State Drain Current (Note 1)	I _{D(ON)}	V _{GS} =-10V, V _{DS} =-5V	-50			Α
DYNAMIC PARAMETERS (Note 2)						
Input Capacitance	C _{ISS}	V _{GS} =0V, V _{DS} =-25V, f=1MHz		3120		pF
Output Capacitance	Coss			440		pF
Reverse Transfer Capacitance	C _{RSS}			320		pF
Gate Resistance	R_{G}	f=1.0MHz		4.3		Ω
SWITCHING PARAMETERS (Note 2)						
Total Gate Charge (Note 3)	Q_G	V _{GS} =-10V, V _{DS} =-20V, I _D =-50A		63	95	nC
Gate to Source Charge (Note 3)	Q_{GS}			13		nC
Gate to Drain Charge (Note 3)	Q_GD			16		nC
Turn-ON Delay Time (Note 3)	$t_{D(ON)}$			15	25	ns
Rise Time (Note 3)	t _R	V _{DD} =-20V, V _{GEN} =-10V, I _D ≈-50A,		18	30	ns
Turn-OFF Delay Time (Note 3)	t _{D(OFF)}	R_L =0.4 $Ω$, R_g =2.5 $Ω$		60	90	ns
Fall-Time (Note 3)	t _F			47	70	ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACT	ERISTICS (T _C =25°C)				
Maximum Body-Diode Pulsed Current	I _{SM}				-100	Α
Drain-Source Diode Forward Voltage (Note 1)	V _{SD}	I _F =-50A, V _{GS} =0V		-1.0	-1.5	>
Body Diode Reverse Recovery Time	t _{RR}	I _F =-50A, di/dt=100A/μs		36	55	ns

Notes: 1. Pulse test; pulse width≤300µs, duty cycle≤2%.

- 2. Guaranteed by design, not subject to production testing.
- 3. Independent of operating temperature.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.