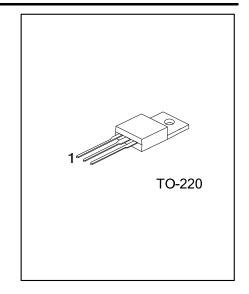


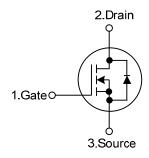
UNISONIC TECHNOLOGIES CO., LTD


UTF1404 **Preliminary Power MOSFET**

160A, 40V N-CHANNEL **POWER MOSFET**

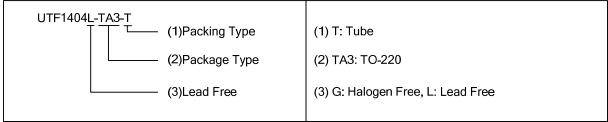
DESCRIPTION

The UTC UTF1404 is an N-channel enhancement MOSFET, it uses UTC's advanced technology to provide the customers with perfect R_{DS(ON)} and high switching speed.


The UTC UTF1404 is suitable for all commercial-industrial applications at power dissipation levels to approximately 50 watts,

FEATURES

- * $R_{DS(ON)}$ =3.5m Ω @ V_{GS} =10V, I_D =95A
- * High Switching Speed


SYMBOL

ORDERING INFORMATION

Ordering Number		Dealeana	Pin	Assignme	Dealing		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTF1404L-TA3-T	UTF1404G-TA3-T	TO-220	G	D	S	Tube	

Pin Assignment: G: Gate D: Drain S: Source Note:

www.unisonic.com.tw 1 of 6

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER				SYMBOL	RATINGS	UNIT
Drain-Source Voltage				V_{DSS}	40	V
Gate-Source Voltage				V_{GSS}	±20	V
Drain Current	Continu	Continuous (V_{GS} =10V) $\frac{T_{G}}{T_{G}}$		- I _D	162 (Note 4)	Α
	Continu				115 (Note 4)	Α
	Pulsed (Pulsed (Note 2)		I _{DM}	650	Α
Avalanche Curr	Avalanche Current (Note 2)		I _{AR}	95	Α	
Single Pulsed (Note 3)		(Note 3)	E _{AS}	519	mJ	
Avalanche Ene	rgy	Repetitive (Note 2)		E _{AR}	±20 V 162 (Note 4) A 115 (Note 4) A 650 A 95 A 519 m 20 m 166 V +150 °C	mJ
Power Dissipation (T _C =25°C)		on (T _C =25°C)		P_D	166	W
Junction Temperature		T_J	+150	°C		
Storage Temperature			nperature		-55~+150	°C

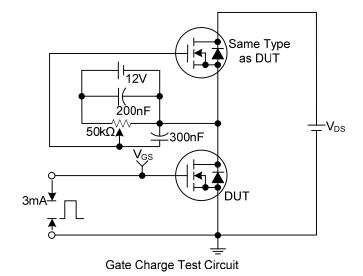
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

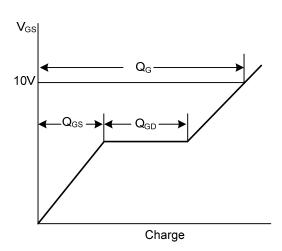
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive rating: pulse width limited by maximum junction temperature
- 3. Starting T_J =25°C, L=0.12mH, R_G =25 Ω , I_{AS} =95A
- 4. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A

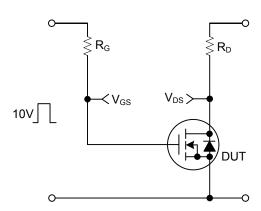
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62	°C/W
Junction to Case	θıc	0.75	°C/W

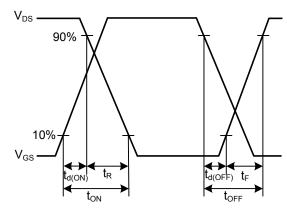

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

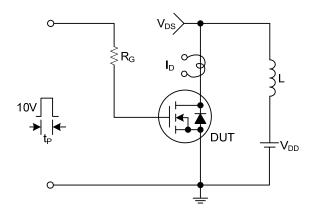

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS		•					
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} =0V, I _D =250μA				V
Drain-Source Leakage Current			V _{DS} =40V, V _{GS} =0V			20	μΑ
		I _{DSS}	V _{DS} =32V, V _{GS} =0V, T _J =150°C			250	μΑ
Gate- Source Leakage Current	Forward	I _{GSS}	V _{GS} =+20V			+200	nA
	Reverse		V _{GS} =-20V			-200	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0		4.0	V
Static Drain-Source On-State Re	sistance	R _{DS(ON)}	V _{GS} =10V, I _D =95A (Note 2)		3.5	4	mΩ
DYNAMIC PARAMETERS						=.	
Input Capacitance		C _{ISS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		7360		рF
Output Capacitance		Coss			1680		pF
Reverse Transfer Capacitance		C _{RSS}			240		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G	-1 -054 \/ -32\/ \/ -40\/		160	200	nC
Gate to Source Charge		Q_{GS}	I _D =95A, V _{DS} =32V, V _{GS} =10V (Note 2)		35		nC
Gate to Drain Charge		Q_GD			42	60	nC
Turn-ON Delay Time		t _{D(ON)}			17		ns
Rise Time		t _R	V_{DD} =20V, I_{D} =95A, R_{G} =2.5 Ω ,		140		ns
Turn-OFF Delay Time		t _{D(OFF)}	R _D =0.21Ω (Note 2)		72		ns
Fall-Time		t _F			26		ns
SOURCE- DRAIN DIODE RATIF	NGS AND	CHARACTE	RISTICS				
Maximum Body-Diode Continuou	us Current	Is	(Note 3)			162	Α
Maximum Body-Diode Pulsed Cu	urrent	I _{SM}	(Note 1)			650	Α
Drain-Source Diode Forward Vol	tage	V_{SD}	I _S =95A, V _{GS} =0V, T _J =25°C (Note 2)			1.3	٧

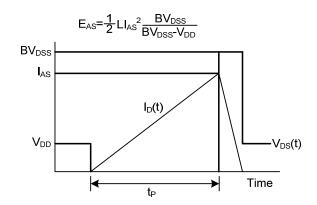
Notes: 1. Repetitive rating: pulse width limited by maximum junction temperature


- 2. Pulse width≤300µs, Duty cycle≤2%
- 3. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A

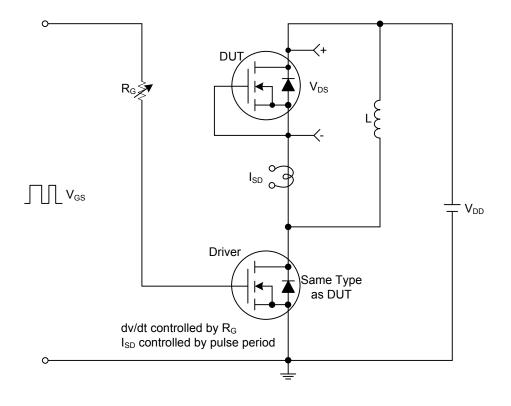
■ TEST CIRCUITS AND WAVEFORMS

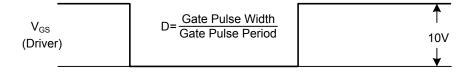


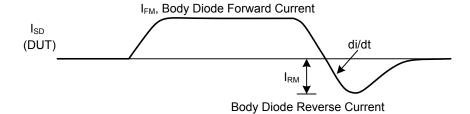

Gate Charge Waveforms

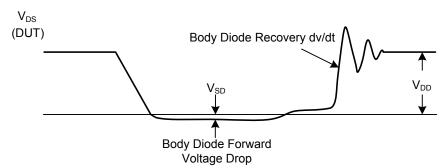

Resistive Switching Test Circuit

Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

Peak Diode Recovery dv/dt Test Circuit and Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

