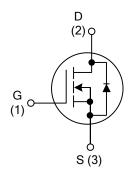


UNISONIC TECHNOLOGIES CO., LTD

UT2804 Preliminary Power MOSFET

N-CHANNEL LOGIC LEVEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

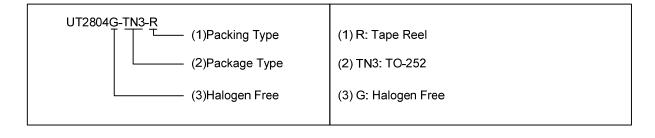
■ DESCRIPTION


The UTC **UT2804** uses advanced technology to provide fast switching speed, ruggedized device design, low on-resistance and cost-effectiveness.

The UTC **UT2804** is suitable for low-profile applications with through-hole version and low voltage applications such as DC/DC converters.

■ FEATURES

- * Low On-Resistance
- * Simple Drive Requirement
- * Fast Switching Speed


■ SYMBOL



ORDERING INFORMATION

Ordering Number		Package	Pin Assignment			Packing	
Lead Free	Halogen Free	TO 252	1	2	3	Facking	
UT2804G-TN3-R	UT2804L-TN3-R	TO-252	G	D	S	Tape Reel	

Note: G: Gate, D: Drain, S: Source

<u>www.unisonic.com.tw</u> 1 of 3

■ **ABSOLUTE MAXIMUM RATINGS** (TC = 25°C Unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DS}	40	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current	T _C =25°C	l _D	10	Α	
	T _C =100°C		8	^	
Pulsed Drain Current (Note 2)		I _{DM}	40	Α	
Power Dissipation	T _C =25°C	P _D	32	W	
1 Ower Dissipation	T _C =100°C	ID	22	V V	
Operating Junction Temperature		TJ	-55 ~ 150	°C	
Storage Temperature		T _{STG}	-55 ~ 150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pulse width limited by maximum junction temperature.
- 3. Duty cycle ≤ 1%

■ THERMAL RESISTANCE RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	$ heta_{JA}$	75	°C/W
Junction to Case	θ_{JC}	3	°C/W

■ **ELECTRICAL CHARACTERISTICS** (TC =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV_{DSS}	I _D =250μA, V _{GS} =0V				V
Drain-Source Leakage Current	I _{DSS}	V_{DS} =32V, V_{GS} =0V			1	μA
		V _{DS} =30V, V _{GS} =0V, T _C =125°C			10	μΑ
Gate-Source Leakage Current	I_{GSS}	V _{DS} =0V, V _{GS} =±20V			±250	nA
On-State Drain Current (Note 1)	$I_{D(ON)}$	V _{DS} =10V, V _{GS} =10V	40			Α
ON CHARACTERISTICS				-	-	-
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1	1.5	2.5	V
Static Drain-Source On-State	В	V_{GS} =-4.5V, I_D =8A		30	42	mΩ
Resistance (Note 1)	$R_{DS(ON)}$	V _{GS} =10V, I _D =10A		21	28	11122
Forward Transconductance (Note 1)	g fs	V _{DS} =10V, I _D =10A		19		S
DYNAMIC PARAMETERS						
Input Capacitance	C_{ISS}	V _{GS} =0V, V _{DS} =10V, f=1MHz		790		pF
Output Capacitance	Coss			175		pF
Reverse Transfer Capacitance	C_{RSS}			65		pF
SWITCHING PARAMETERS (Note 2)			_	_	_	
Total Gate Charge	Q_{G}	V _{GS} =10V, V _{DS} =0.5V _{(BR)DSS} , I _D =10A		16		nC
Gate to Source Charge	Q_GS			2.5		nC
Gate to Drain Charge	Q_GD			2.1		nC
Turn-ON Delay Time	$t_{D(ON)}$	V_{GS} =10V, V_{DS} =20V, I_{D} \tilde{1} 1A, R_{GS} =6\Omega, R_{L} =1\Omega		2.2	4.4	ns
Rise Time	t_R			7.5	15	ns
Turn-OFF Delay Time	$t_{D(OFF)}$			11.8	21.3	ns
Fall-Time	t_{F}			3.7	7.4	ns
SOURCE- DRAIN DIODE RATINGS A	ND CHARACT	TERISTICS				
Drain-Source Diode Forward Voltage		I _F =I _S , V _{GS} =0V			1	V
(Note 1)	V _{SD}				ı	V
Reverse Recovery Time	t _{RR}	-I _F =5A, dI _F /dt=100A/μs		15.5		ns
Reverse Recovery Charge	Q_{RR}			7.9		nC
Continuous Current	Is				1.3	Α
Pulsed Current (Note 3)	I_{SM}				2.6	Α

Note: 1. Pulse test: Pulse Width ≤ 300µsec, Duty Cycle ≤ 2%.

- 2. Independent of operating temperature.
- 3. Pulse width limited by maximum junction temperature.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.