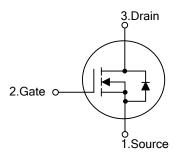


UNISONIC TECHNOLOGIES CO., LTD

MMBF170

Preliminary


0.5A, 60V N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

DESCRIPTION

The UTC **MMBF170** is an N-channel enhancement MOSFET using UTC's advanced technology to provide the customers with perfect $R_{DS(ON)}$, low input capacitance, low gate threshold voltage and high switching speed.

FEATURES

- * $R_{DS(ON)}$ <5m Ω @ V_{GS} =10V, I_D =0.2A
- * High Switching Speed
- * Low Input Capacitance(typical 22pF)
- SYMBOL

3 3 2 1 2 SOT-23-3 (JEDEC TO-236)

ORDERING INFORMATION

Ordering Number			Deekege	Pin Assignment			Deaking		
Lead Free	Halogen Free		Package	1	2	3	Packing		
MMBF170L-AE2-R	MMBF170G-AE2-R		SOT-23	S	G	D	Tape Reel		
Note: Pin Assignment: G: Gate D: Drain S: Source									
MMBF170L-AE2-R (1)Packing Type (2)Package Type (3)Lead Free		 (1) R: Tape Reel (2) AE2: SOT-23-3 (3) G: Halogen Free, L: Lead Free 							

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	60	V	
Gate-Source Voltage	Continuous	V	±20	V	
	Pulsed	V _{GSS}	±40	V	
Drain-Gate Voltage R _{GS} ≤1.0MΩ		V _{DGR}	60	V	
Drain Current (Note 2)	Continuous	I _D	500	mA	
	Pulsed	I _{DM}	800	mA	
Power Dissipation (Note 2)			225	mW	
Derating above T _A =25°C (Note 2)		P _D	1.80	mW/°C	
Junction Temperature		TJ	150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Valid provided that terminals are kept at specified ambient temperature.

THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	556	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS (Note	e 1)							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =100μA, V _{GS} =0V	60	70		V	
Drain-Source Leakage Current		I _{DSS}	V _{DS} =60V, V _{GS} =0V			1.0	μA	
Gate- Source Leakage Current	Forward	- I _{GSS}	V _{DS} =0V, V _{GS} =+15V			+10	nA	
	Reverse		V _{DS} =0V, V _{GS} =-15V			-10	nA	
ON CHARACTERISTICS (Note 1)								
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =-250µA	0.8	2.1	3.0	V	
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =200mA			5.0	0	
			V _{GS} =4.5V, I _D =50mA			5.3		
Forward Transconductance		g fs	V _{DS} =10V, I _D =0.2A	80			mS	
DYNAMIC PARAMETERS								
Input Capacitance		C _{ISS}			22	40	рF	
Output Capacitance		C _{oss}	V _{GS} =0V, V _{DS} =10V, f=1.0MHz		11	30	рF	
Reverse Transfer Capacitance					2.0	5.0	рF	
SWITCHING PARAMETERS								
Turn-ON Delay Time		t _{D(ON)}	V _{DD} =25V, I _D =0.5A, V _{GS} =10V,			10	ns	
Turn-OFF Delay Time		t _{D(OFF)}	R_{GEN} =50 Ω			10	ns	

Notes: 1. Pulse width \leq 300µs, duty cycle \leq 2%.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

