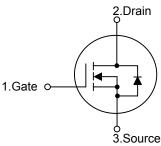


# UNISONIC TECHNOLOGIES CO., LTD

3N40 **Preliminary Power MOSFET** 

# 3A, 400V N-CHANNEL **POWER MOSFET**

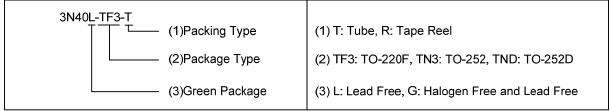
#### **DESCRIPTION**


The UTC 3N40 is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology specializes in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

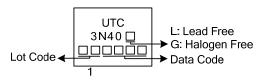
The UTC 3N40 is universally applied in electronic lamp ballast based on half bridge topology and high efficient switched mode power supply.

#### **FEATURES**

- \*  $R_{DS(ON)}$ <2.0 $\Omega$  @  $V_{GS}$ =10V,  $I_D$ =1.5A
- \* High switching speed
- \* 100% avalanche tested


#### **SYMBOL**






| Ordering Number |           |              | Dookogo | Pin Assignment |   |   | Doolsing  |  |
|-----------------|-----------|--------------|---------|----------------|---|---|-----------|--|
| L               | ead Free  | Halogen Free | Package | 1              | 2 | 3 | Packing   |  |
| 3N-             | 40L-TF3-T | 3N40G-TF3-T  | TO-220F | G              | D | S | Tube      |  |
| 3N4             | 10L-TN3-R | 3N40G-TN3-R  | TO-252  | G              | D | S | Tape Reel |  |
| 3N4             | IOL-TND-R | 3N40G-TND-R  | TO-252D | G              | D | S | Tape Reel |  |

Note: Pin Assignment: G: Gate D: Drain S: Source



#### **MARKING**



TO-220F TO-252

www.unisonic.com.tw 1 of 6

#### ■ **ABSOLUTE MAXIMUM RATINGS** (T<sub>C</sub>=25°C, unless otherwise specified)

| PARAMETER            |                                   | SYMBOL          | RATINGS  | UNIT |
|----------------------|-----------------------------------|-----------------|----------|------|
| Drain-Source Voltage | ce Voltage V <sub>DSS</sub> 400   |                 | V        |      |
| Gate-Source Voltage  | ate-Source Voltage                |                 | ±30      | V    |
| Drain Current        | Continuous (T <sub>C</sub> =25°C) | I <sub>D</sub>  | 3        | Α    |
|                      | Pulsed (Note 2)                   | I <sub>DM</sub> | 12       | Α    |
| Avalanche Energy     | Single Pulsed (Note 3)            | E <sub>AS</sub> | 290      | mJ   |
|                      | Repetitive (Note 2)               | E <sub>AR</sub> | 3        | mJ   |
| Power Dissipation    | TO-220F                           |                 | 25       | W    |
|                      | TO-252/TO-252D                    |                 | 50       | W    |
| Danata abassa 05°0   | TO-220F                           | P <sub>D</sub>  | 0.2      | W/°C |
| Derate above 25°C    | TO-252/TO-252D                    |                 | 0.4      | W/°C |
| Junction Temperature |                                   | TJ              | +150     | °C   |
| Storage Temperature  | orage Temperature                 |                 | -55~+150 | °C   |

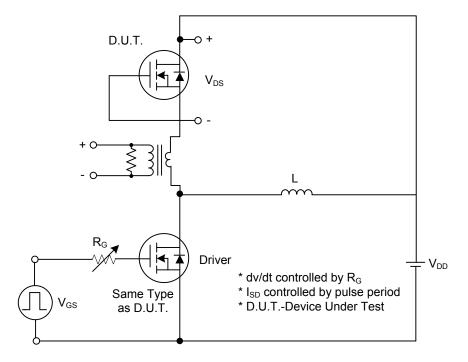
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

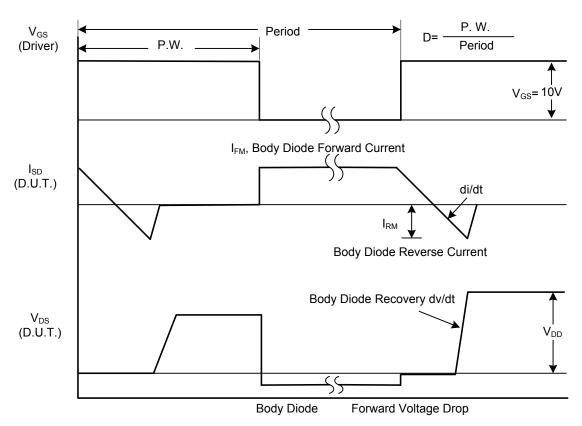
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L=56mH,  $I_{AS}$ =3.0 A,  $V_{DD}$ =50V,  $R_{G}$ =25  $\Omega$ , Starting  $T_{J}$  = 25°C

#### ■ THERMAL DATA

| PARAMETER           |                | SYMBOL        | RATINGS | UNIT |  |
|---------------------|----------------|---------------|---------|------|--|
| Lunction to Ambient | TO-220F        | 0             | 62.5    | °C/W |  |
| Junction to Ambient | TO-252/TO-252D | $\theta_{JA}$ | 110     |      |  |
| Lunction to Coop    | TO-220F        | 0             | 4.9     | °C/W |  |
| Junction to Case    | TO-252/TO-252D | θις           | 2.5     |      |  |

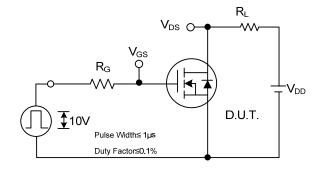

## ■ **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub>=25°C, unless otherwise specified)

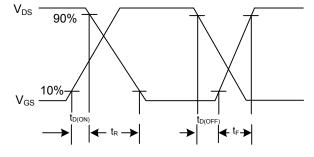
| PARAMETER                                 |            | SYMBOL                               | TEST CONDITIONS                                                             | MIN | TYP  | MAX  | UNIT |
|-------------------------------------------|------------|--------------------------------------|-----------------------------------------------------------------------------|-----|------|------|------|
| OFF CHARACTERISTICS                       |            |                                      |                                                                             |     |      |      |      |
| Drain-Source Breakdown Voltage            |            | $BV_{DSS}$                           | $I_D$ =250 $\mu$ A, $V_{GS}$ =0 $V$                                         | 400 |      |      | V    |
| Breakdown Voltage Temperature Coefficient |            | $\triangle BV_{DSS}/\triangle T_{J}$ | Reference to 25°C, I <sub>D</sub> =250µA                                    |     | 0.38 |      | V/°C |
| Drain-Source Leakage Current              |            | I <sub>DSS</sub>                     | V <sub>DS</sub> =400V, V <sub>GS</sub> =0V                                  |     |      | 10   | μΑ   |
| Gate- Source Leakage Current              | Forward    |                                      | V <sub>GS</sub> =+30V, V <sub>DS</sub> =0V                                  |     |      | +100 | nA   |
|                                           | Reverse    | $I_{GSS}$                            | V <sub>GS</sub> =-30V, V <sub>DS</sub> =0V                                  |     |      | -100 | nA   |
| ON CHARACTERISTICS                        |            |                                      |                                                                             |     |      |      |      |
| Gate Threshold Voltage                    |            | $V_{GS(TH)}$                         | $V_{DS}=V_{GS}, I_{D}=250\mu A$ 2                                           |     |      | 4.0  | V    |
| Static Drain-Source On-State Re           | esistance  | R <sub>DS(ON)</sub>                  | V <sub>GS</sub> =10V, I <sub>D</sub> =1.5A                                  |     |      | 2.0  | Ω    |
| DYNAMIC PARAMETERS                        |            |                                      |                                                                             |     |      |      |      |
| Input Capacitance                         |            | C <sub>ISS</sub>                     |                                                                             |     | 445  | 545  | pF   |
| Output Capacitance                        |            | Coss                                 | V <sub>GS</sub> =0V, V <sub>DS</sub> =25V, f=1.0MHz                         |     | 60   | 80   | pF   |
| Reverse Transfer Capacitance              |            | $C_{RSS}$                            |                                                                             |     | 13   | 16   | pF   |
| SWITCHING PARAMETERS                      |            |                                      |                                                                             |     |      |      |      |
| Turn-ON Delay Time                        |            | t <sub>D(ON)</sub>                   |                                                                             |     | 40   | 50   | ns   |
| Rise Time                                 |            | t <sub>R</sub>                       | $V_{GS}$ =10V, $V_{DD}$ =30V, $I_{D}$ =1A, $R_{G}$ =25 $\Omega$ (Note 1, 2) |     | 40   | 60   | ns   |
| Turn-OFF Delay Time                       |            | $t_{D(OFF)}$                         |                                                                             |     | 100  | 120  | ns   |
| Fall-Time                                 |            | t <sub>F</sub>                       |                                                                             |     | 60   | 80   | ns   |
| Total Gate Charge                         |            | $Q_G$                                | V <sub>DS</sub> =100V, I <sub>D</sub> =3A, I <sub>G</sub> =3.3mA            |     | 40   | 60   | nC   |
| Gate to Source Charge                     |            | $Q_GS$                               | (Note 1. 2)                                                                 |     | 3.6  |      | nC   |
| Gate to Drain Charge                      |            | $Q_GD$                               | (14010-1, 2)                                                                |     | 9.8  |      | nC   |
| SOURCE- DRAIN DIODE RATII                 | NGS AND CI | HARACTERIST                          | rics                                                                        |     |      |      |      |
| Maximum Body-Diode Continuo               | us Current | Is                                   |                                                                             |     |      | 3.0  | Α    |
| Maximum Body-Diode Pulsed Co              | urrent     | I <sub>SM</sub>                      |                                                                             |     |      | 12   | Α    |
| Drain-Source Diode Forward Vo             | Itage      | $V_{SD}$                             | I <sub>S</sub> =3A, V <sub>GS</sub> =0V                                     |     |      | 1.5  | V    |


Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

<sup>2.</sup> Essentially independent of operating temperature

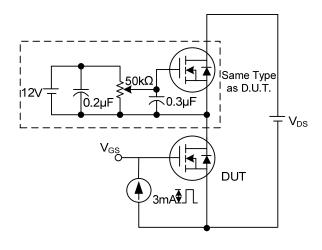
#### ■ TEST CIRCUITS AND WAVEFORMS

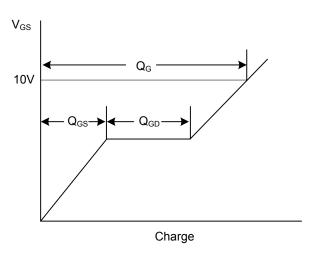




Peak Diode Recovery dv/dt Test Circuit



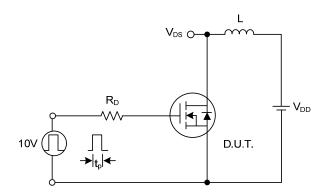
Peak Diode Recovery dv/dt Waveforms

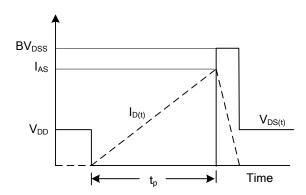

## ■ TEST CIRCUITS AND WAVEFORMS (Cont.)






**Switching Test Circuit** 


**Switching Waveforms** 






Gate Charge Test Circuit

Gate Charge Waveform





Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

