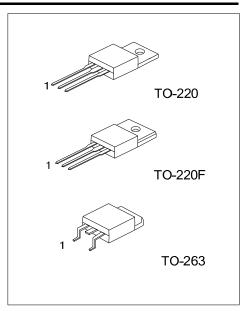
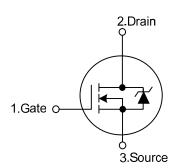


UNISONIC TECHNOLOGIES CO., LTD

UF8010 Power MOSFET

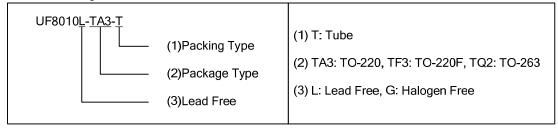

80A, 100V N-CHANNEL **POWER MOSFET**

DESCRIPTION


The UTC UF8010 uses advanced technology to provide excellent R_{DS(ON)}, fast switching speed, low gate charge, and excellent efficiency. This device is suitable for high frequency DC-DC converters, UPS and motor control.

FEATURES

- * $R_{DS(ON)}$:12m Ω (Typ.)
- * Lower gate-drain charge for lower switching losses
- * Perfect avalanche voltage and current performance
- * Fully characterized capacitance including effective Coss to simplify design


SYMBOL

ORDERING INFORMATION

Ordering Number		Dealtage	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UF8010L-TA3-T	UF8010G-TA3-T	TO-220	G	D	S	Tube	
UF8010L-TF3-T	UF8010G-TF3-T	TO-220F	G	D	S	Tube	
UF8010L-TQ2-T	UF8010G-TQ2-T	TO-263	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 6

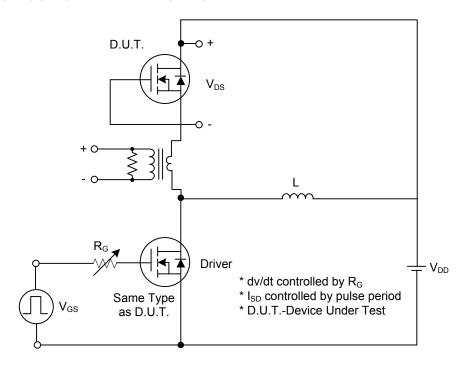
■ ABSOLUTE MAXIMUM RATINGS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Gate to Source Voltage		V_{GS}	±20	V
Continuous Drain Current (V _{GS} =10V,T _C =25°C)		I _D	80 (Note 2)	Α
Pulsed Drain Current		I_{DM}	320	Α
Avalanche Energy	Single Pulse (Note 2)	E _{AS}	310	mJ
	Repetitive	E _{AR}	26	mJ
Avalanche Current		I_{AR}	45	Α
Peak Diode Recovery dv/dt (Note 3)		dv/dt	16	V/ns
Power Dissipation(T _C =25°C)	TO-220 / TO-263		260	W
	TO-220F	_	54	W
Derating above 25°C	TO-220 / TO-263	P_D	1.8	W/°C
	TO-220F		0.36	W/°C
Junction Temperature		TJ	+150	°C
Storage Temperature		T_{STG}	-55 ~ + 150	°C

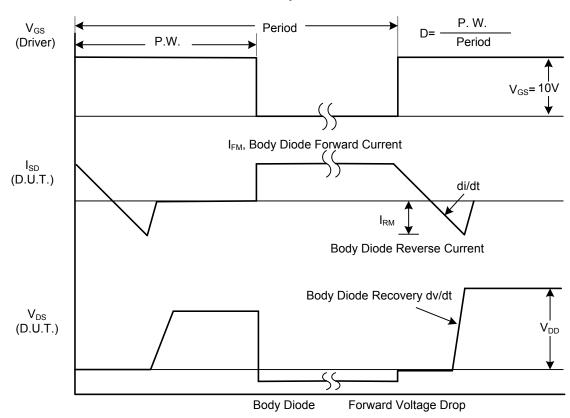
Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Starting T_J = 25°C, L = 0.31mH, R_G =25 Ω , I_{AS} = 45A.
- 3. $I_{SD} \le 45A$, di/dt $\le 110A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 150^{\circ}C$

■ THERMAL DATA

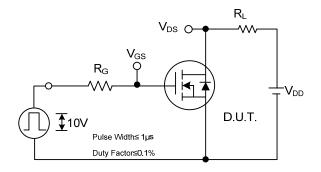

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
Junction to Case	TO-220 / TO-263	0	0.57	°C/W
	TO-220F	$\theta_{ m JC}$	2.3	°C/W

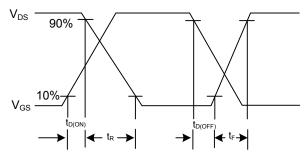
■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT		
STATIC CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0 V, I _D =250μA	100			V		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V			20	μA		
Gate-Source Forward Current		V _{GS} = 20 V			200	nA		
Gate-Source Reverse Current	I_{GSS}	V _{GS} = -20 V			-200	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V		
Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_D = 45 \text{A (Note 1)}$		12	15	mΩ		
DYNAMIC CHARACTERISTICS	_							
Input Capacitance	C_{ISS}			3617		pF		
Output Capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0\text{V}, f = 1.0\text{MHz}$		620		pF		
Reverse Transfer Capacitance	C_{RSS}	7		59		pF		
SWITCHING CHARACTERISTICS	_							
Turn-On Delay Time	$t_{D(ON)}$	$V_{DS} = 30V, I_{D} = 1A, R_{G} = 39\Omega$ $V_{GS} = 10V \text{ (Note 1)}$		174	200	ns		
Rise Time	t_R			370	450	ns		
Turn-Off Delay Time	t _{D(OFF)}			757	850	ns		
Fall Time	t_{F}			392	450	ns		
Total Gate Charge	Q_{G}	V 00V V 40V		399	450	nC		
Gate-Source Charge	Q_GS	V _{DS} =80V, V _{GS} =10V		41		nC		
Gate-Drain Charge	Q_{GD}	I _D = 80A (Note 1)		96		nC		
SOURCE- DRAIN DIODE RATINGS AND		RISTICS						
Drain Course Diade Ferward Voltage		I _S =80 A ,V _{GS} =0 V,			1.3	V		
Drain-Source Diode Forward Voltage	V_{SD}	T _J = 25°C (Note 1)			1.3	V		
Maximum Continuous Drain-Source	_				80	Α		
Diode Forward Current	I _S				80	А		
Maximum Pulsed Drain-Source Diode	I _{SM}				320	Α		
Forward Current (Note 1)					320	^		
Reverse Recovery Time	t_RR	I_F =80A, V_{DD} =50V, T_J = 150°C		99	150	ns		
Reverse Recovery Charge QRF		di/dt = 100 A/µs (Note 1)		460	700	nC		

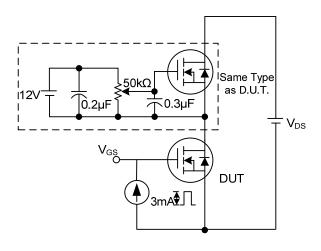
Note: 1. Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$

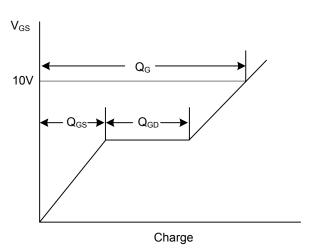
■ TEST CIRCUITS AND WAVEFORMS



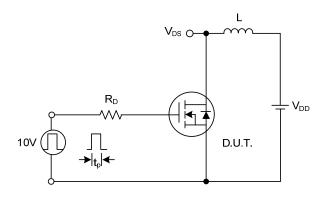

Peak Diode Recovery dv/dt Test Circuit

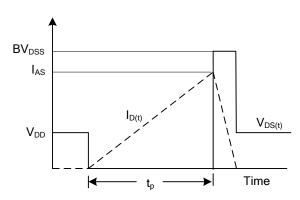
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS (Cont.)



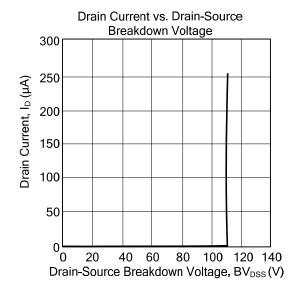
Switching Test Circuit

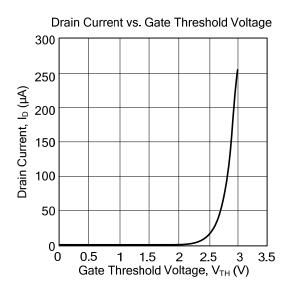

Switching Waveforms

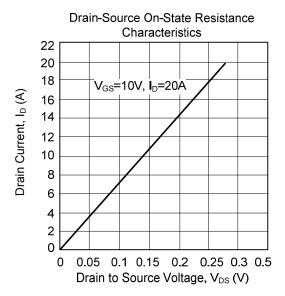


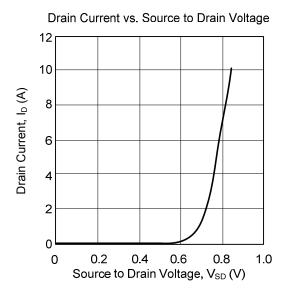
Gate Charge Test Circuit

Gate Charge Waveform






Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.