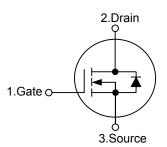


UT110N03

Power MOSFET

N-CHANNEL ENHANCEMENT MODE


DESCRIPTION

The **UT110N03** uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

FEATURES

- * V_{DS}(V)=26V
- * I_D=110A
- * R_{DS(ON)}=4.8mΩ@V_{GS}=10 V
- * R_{DS(ON)} =7.0mΩ@V_{GS}=4.5 V

SYMBOL

1

ORDERING INFORMATION

Ordering Number		Deekege	Pin Assignment			Decking	
Lead Free	Halogen Free	Package		2	3	Packing	
UT110N03L-TA3-T	UT110N03G-TA3-T	TO-220	G	D	S	Tube	

UT110N03 <u>L-TA3-T</u>	(1)Packing Type (2)Package Type (3)Lead Free	(1) T: Tube (2) TA3: TO-220 (3) G: Halogen Free, L: Lead Free

■ ABSOLUTE MAXIMUM RATINGS (T_c =25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V _{DSS}	30	V
Gate-Source Voltage	V _{GSS}	±20	V
Continuous Drain Current	I _D	110	А
Pulsed Drain Current (Note 2)	I _{DM}	440	А
Single Pulsed Avalanche Current (Note 3)	I _{AS}	35	А
Single Pulsed Avalanche Energy (Note 3)	E _{AS}	875	mJ
Power Dissipation	PD	100	W
Junction Temperature	TJ	+175	°C
Strong Temperature	T _{STG}	-55 ~ +175	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Pulse width limited by maximum junction temperature

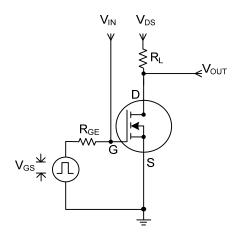
3. L = 0.5mH, I_{AS} = 35A, V_{DD} = 25V, R_G = 25 Ω , Starting T_J = 25°C.

THERMAL DATA

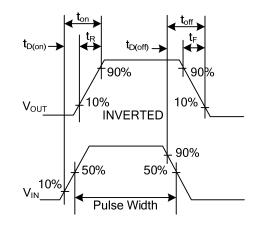
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ _{JA}	62.5	°C/W
Junction to Case	θ _{JC}	1.5	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV_{DSS}	V _{GS} =0V, I _D =250 μA	30			V	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =26V,V _{GS} =0 V			1	μA	
Gate-Source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±20 V			±100	nA	
ON CHARACTERISTICS(Note1)							
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250 μA	1		3	V	
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =50 A		3.9	4.8	mΩ	
		V _{GS} =4.5V, I _D =40 A		5.2	7.0	mΩ	
DYNAMIC PARAMETERS (Note 2)							
Input Capacitance	CISS			9500		pF	
Output Capacitance	Coss	V _{DS} =15V, V _{GS} =0V, f=1.0MHz		800		pF	
Reverse Transfer Capacitance	C _{RSS}			300		pF	
SWITCHING PARAMETERS(Note 2)							
Total Gate Charge	Q_{G}			50	65	nC	
Gate Source Charge	Q_{GS}	V _{DS} =15V, V _{GS} =5V, I _D =16A		20.8		nC	
Gate Drain Charge	Q_{GD}			19		nC	
Turn-ON Delay Time	t _{D(ON)}			25.7	50	ns	
Turn-ON Rise Time	t _R	V_{DD} =15V, I_D =1A, R_{GEN} =6 Ω		10	20	ns	
Turn-OFF Delay Time	t _{D(OFF)}	V _{GS} =10 V		128	200	ns	
Turn-OFF Fall-Time	t _F]		34	70	ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS							
Drain-Source Diode Forward Voltage	V_{SD}	I _S =20 A,V _{GS} =0 V			1.5	V	
Drain-Source Diode Forward Current	ls				90	А	
		0.00/					


Notes: 1. Pulse Test: Pulse Width<300µs, Duty Cycle<2%

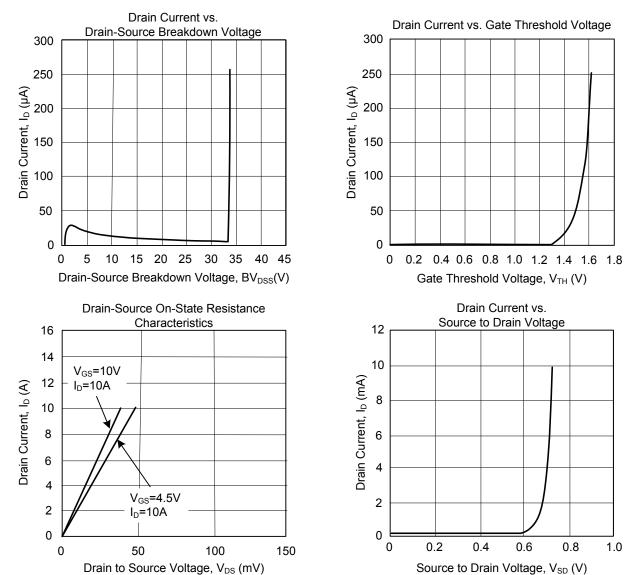
2. Guaranteed by design, not subject to production testing.



UT110N03

TEST CIRCUIT AND WAVEFORM

Switching Time Test Circuit



Switching Waveforms

UT110N03

Power MOSFET

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

0.8

1.0