

UNISONIC TECHNOLOGIES CO., LTD

UTT200N02 Preliminary Power MOSFET

200 A, 20 V N-CHANNEL POWER MOSFET

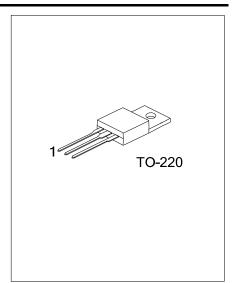
■ DESCRIPTION

The UTC **UTT200N02** is an N-channel power MOSFET using UTC's advanced technology to provide customers with a minimum on-state resistance and superior switching performance.

The UTC **UTT200N02** is generally applied in synchronous Rectification or DC to DC convertor.

- * $V_{DS} = 20V$
- * I_D= 200A
- * $R_{DS(ON)}$ =2.0m Ω (Typ.) @ V_{GS} =10V
- * Low Gate Charge (Typical 84nC)
- * High Switching Speed
- * High Power and Current Handling Capability
- * RoHS Compliant

■ SYMBOL



■ ORDERING INFORMATION

Ordering Number		Dookses	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTT200N02L-TA3-T	UTT200N02G-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

UTT200N02L-TA3-T
(1)Packing Type
(1) T: Tube
(2) TA3: TO-220
(3) Lead Free
(3) G: Halogen Free, L: Lead Free

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	20	V
Gate-Source Voltage		V _{GSS}	±20	V
Drain Current	Continuous (Silicon Limited)	I _D	200 (Note 2)	Α
	Pulsed (Note 3)	I _{DM}	800	Α
Single Pulsed Avalanche Energy (Note 4)		E _{AS}	864	mJ
Peak Diode Recovery dv/dt (Note 5)		dv/dt	6.0	V/ns
Power Dissipation		0	214	W
Derate above 25°C		P_{D}	1.43	W/°C
Junction Temperature		T_J	+150	°C
Storage Temperature Range		T_{STG}	-55~+175	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 100A.
- 3. Repetitive Rating: Pulse width limited by maximum junction temperature
- 4. L = 3mH, I_{AS} =24A, V_{DD} = 20V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 5. $I_{SD} \le 200A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62.5	°C/W
Junction to Case	$\theta_{ m JC}$	0.7	°C/W

Preliminary

■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	20			V	
Breakdown Voltage Temperature Coefficient	△BV _{DSS} /△T _J	Reference to 25°C, I _D =250μA		30		mV/°C	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =20V, V _{GS} =0V			10	μA	
Gate- Source Leakage Current Forward Reverse	- I _{GSS}	V_{GS} =+20V, V_{DS} =0V V_{GS} =-20V, V_{DS} =0V			+100	nA nA	
ON CHARACTERISTICS							
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0		3.0	V	
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =80A		2.0	2.4	mΩ	
DYNAMIC PARAMETERS							
Input Capacitance	C _{ISS}			5490	7300	pF	
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		1220	1620	pF	
Reverse Transfer Capacitance	C _{RSS}			155	233	pF	
SWITCHING PARAMETERS							
Total Gate Charge at 10V	$Q_{G(tot)}$	V _{GS} =10V, V _{DS} =16V, I _D =80A		84	109	nC	
Gate to Source Charge	Q_GS			19		nC	
Gate Charge Threshold to Plateau	Q_{GS2}	(Note 1, 2)		9.5		nC	
Gate to Drain Charge	Q_GD			12		nC	
Turn-ON Delay Time	t _{D(ON)}			17	44	ns	
Rise Time	t _R	V_{DD} =10V, I_{D} =80A, R_{GEN} =4.7 Ω ,		8	26	ns	
Turn-OFF Delay Time	t _{D(OFF)}	V _{GS} =10V (Note 1, 2)		71	152	ns	
Fall-Time	t _F			17	44	ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS							
Maximum Body-Diode Continuous	I _S				200	Α	
Current	IS				200	^	
Maximum Body-Diode Pulsed Current	I _{SM}				800	Α	
Drain-Source Diode Forward Voltage	V_{SD}	I _{SD} =200A, V _{GS} =0V			1.3	V	

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

^{2.} Essentially independent of operating temperature Typical Characteristics

■ TEST CIRCUITS AND WAVEFORMS

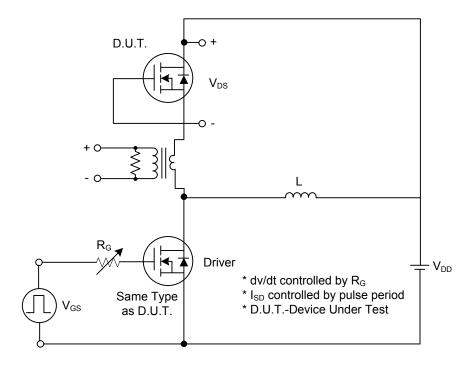


Fig. 1A Peak Diode Recovery dv/dt Test Circuit

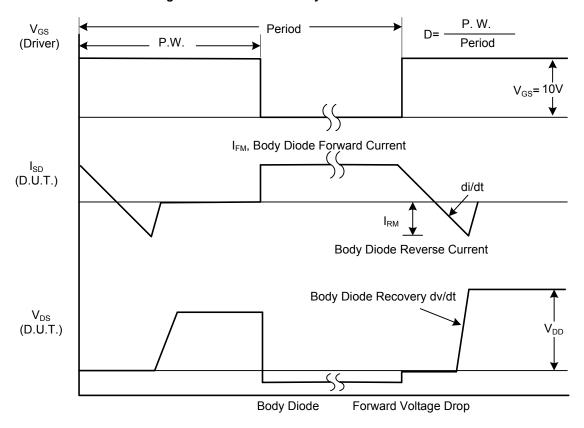
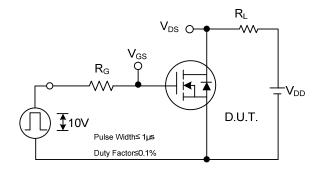



Fig. 1B Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

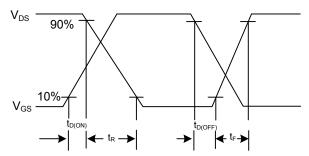
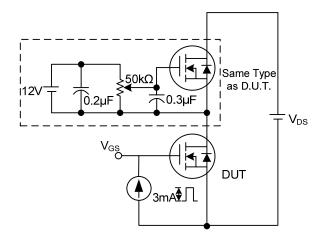



Fig. 2A Switching Test Circuit

Fig. 2B Switching Waveforms

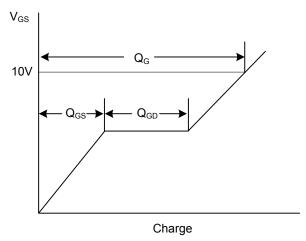
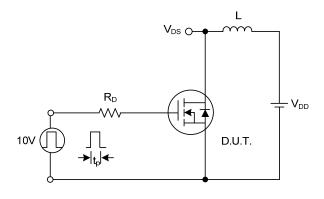



Fig. 3A Gate Charge Test Circuit

Fig. 3B Gate Charge Waveform

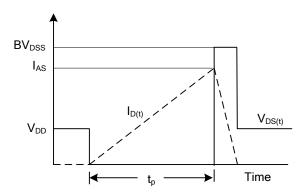


Fig. 4A Unclamped Inductive Switching Test Circuit

Fig. 4B Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

