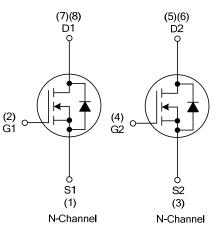


UNISONIC TECHNOLOGIES CO., LTD

12NN10

Preliminary

DUAL N-CHANNEL ENHANCEMENT MODE POWER MOSFET

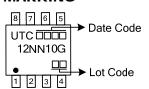

DESCRIPTION

The UTC **12NN10** is a dual N-Channel enhancement mode power MOSFET, it provides designer with fast switching speed, ruggedized device design, low on-resistance and cost-effectiveness.

FEATURES

- * Low Gate Charge (Typically 10nC)
- * 2.5A, 100V, 150mΩ @ V_{GS}=10V
- * Fast Switching Speed
- * Simple Drive Requirement

SYMBOL


SOP-8

ORDERING INFORMATION

Ordering Number		Package		Pir	Deaking				
				2	3	4	5, 6	7, 8	Packing
12NN10G-S08-R	SOP-8		S1	G1	S2	G2	D2	D1	Tape Reel
Note: Pin Assignment: G: Gate D: Drain S: Source									
12NN10G- <u>S08</u> -R (1)Packing Type (2)Package Type		(1) R: Ta	ipe Ri	eel					
		(2) S08:	SOP-	.8					

(3) G: Halogen Free and Lead Free

■ MARKING

(3)Green Package

12NN10

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	100	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current	Continuous(Note 3)	Ι _D	2.5	А	
	Pulsed(Note 2)	I _{DM}	10	А	
Power Dissipation		PD	2	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

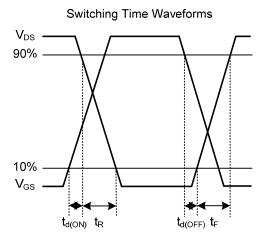
2. Pulse width limited by Max. junction temperature.

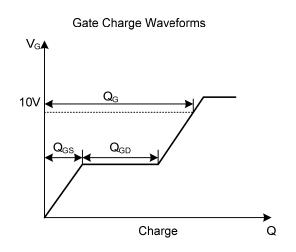
3. Surface mounted on 1 in² copper pad of FR4 board, t <10sec ; 135°C/W when mounted on Min. copper pad.

THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ _{JA}	62.5	°C/W

Note: Surface mounted on 1 in² copper pad of FR4 board, t <10sec ; 135°C/W when mounted on Min. copper pad.


■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250µA	100			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =80V, V _{GS} =0V			10	μA
Forward	GSS	V _{DS} =0V ,V _{GS} =20V			100	nA
Gate-Source Leakage Current Reverse		V _{DS} =0V ,V _{GS} =-20V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS}=V_{GS}, I_{D}=250\mu A$	1		3	V
Drain-Source On-State Resistance (Note 1)	R _{DS(ON)}	V _{GS} =10V, I _D =2A		0.15	0.18	mΩ
Forward Transconductance	g fs	V _{DS} =10V, I _D =2A		2.8		S
DYNAMIC PARAMETERS						
Input Capacitance	CISS			420	672	pF
Output Capacitance	C _{OSS}	V _{DS} =25V,V _{GS} =0V,f=1.0MHz		60		pF
Reverse Transfer Capacitance	C _{RSS}			40		pF
SWITCHING PARAMETERS						
Total Gate Charge (Note 1)	Q_{G}			10	16	nC
Gate-Source Charge	Q_{GS}	V_{DS} =80V, V_{GS} =10V, I_{D} =2A		2		nC
Gate-Drain Charge	Q_{GD}			4		nC
Turn-ON Delay Time (Note 1)	t _{D(ON)}			6.5		ns
Turn-ON Rise Time	t _R	V _{DS} =50V, I _D =2A, R _G =3.3Ω		7		ns
Turn-OFF Delay Time	t _{D(OFF)}	V _{GS} =10V		14		ns
Turn-OFF Fall Time	t⊨			3.5		ns
SOURCE- DRAIN DIODE RATINGS AND CH	ARACTERIS	STICS				
Drain-Source Diode Forward Voltage (Note 1)	V _{SD}	I _S =1.5A, V _{GS} =0V			1.3	V
Body Diode Reverse Recovery Time (Note 1)	t _{RR}	V _{GS} =0V, I _S =2A,				ns
Body Diode Reverse Recovery Charge	Q _{RR}	dI _F /dt=100A/µs		75		nC
Note: Pulse test				•	•	·

Note: Pulse test.

TEST CIRCUITS AND WAVEFORMS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

