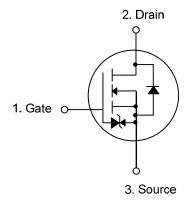
UTC UNISONIC TECHNOLOGIES CO., LTD

UK2996 MOSFET

600V SILICON N-CHANNEL POWER MOSFET

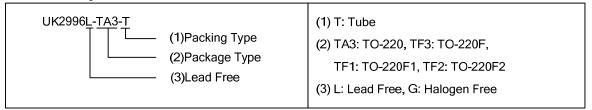

DESCRIPTION


The UK2996 is an N-channel enhancement mode field-effect power transistor. Intended for use in high voltage, high speed switching applications in power supplies, DC-DC converter, relay drive and PWM motor drive controls.

FEATURES

- * Fast Switching Times
- * Improved Inductive Ruggedness
- * High Forward Transfer Admittance
- * Low on Resistance
- * Low Leakage Current
- * Lower Input Capacitance

SYMBOL



ORDERING INFORMATION

Ordering Number		Doolsono	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UK2996L-TA3-T	UK2996G-TA3-T	TO-220	G	D	S	Tube	
UK2996L-TF1-T	UK2996G-TF1-T	TO-220F1	G	D	S	Tube	
UK2996L-TF2-T	UK2996G-TF2-T	TO-220F2	G	D	S	Tube	
UK2996L-TF3-T	UK2996G-TF3-T	TO-220F	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 6 QW-R502-063.C

ABSOLUTE MAXIMUM RATING

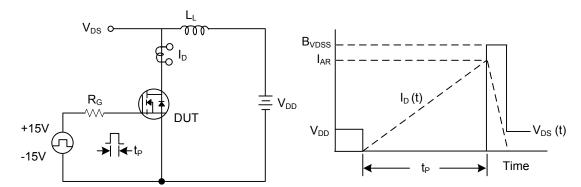
PARAMETER		SYMBOL	RATINGS	UNIT
Drain to Source Voltage		V_{DSS}	600	V
Continuous Drain Current		I _D	10	Α
Pulsed Drain Current		I _{DM}	30	Α
Drain to Gate Voltage (R_{GS} = 20 k Ω)		V_{DGR}	600	V
Gate to Source Voltage		V_{GSS}	±30	V
Avalanche Current		I _{AR}	10	Α
Single Pulsed Avalanche energy (Note 2)		E _{AS}	252	mJ
Repetitive Avalanche Energy (Note 3)		E _{AR}	4.5	mJ
Power Dissipation (T _C = 25°C)	TO-220		45	
	TO-220F/TO-220F1	P_{D}	36	W
	TO-220F2]	38	
Junction Temperature		ΤJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ + 150	°C

Note 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. L = 4.41 mH, I_{AR} = 10 A, V_{DD} = 90 V, R_G = 25 Ω , starting T_J = 25°C.
- 3. Pulse width and frequency is limited by $T_{\rm J}.\,$

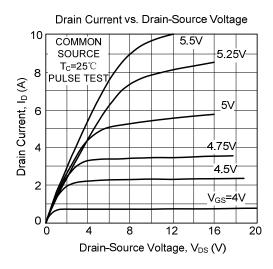
■ THERMAL DATA

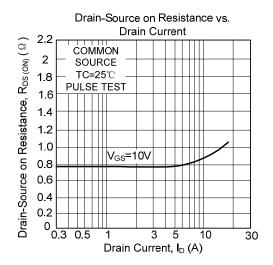
CHARACTERISTICS		SYMBOL	RATINGS	UNIT	
Channel to Ambient		θ_{JA}	62.5	°C / W	
	TO-220		2.78		
Channel to Case	TO-220F/TO-220F1	θ_{JC}	3.47	°C / W	
	TO-220F2		3.29		

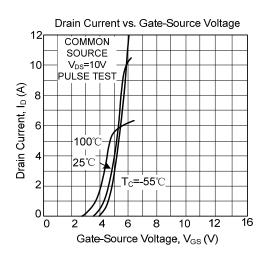

■ ELECTRICAL CHARACTERISTICS (T_A = 25°C)

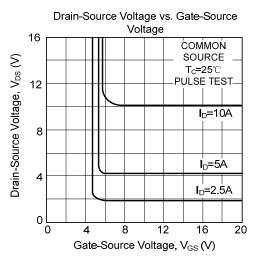
PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
Gate-Source Breakdown Voltage		BV_GSS	$V_{DS} = 0V, I_{G} = \pm 10 \mu A$	±30			V
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 10mA$	600			V
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = 10V, I_{D} = 1mA$	2.0		4.0	V
Gate Source Leakage Current		I _{GSS}	$V_{GS} = \pm 25V, V_{DS} = 0V$			±10	μΑ
Drain Source Le	akage Current	I _{DSS}	$V_{DS} = 600V, V_{GS} = 0V$			100	μΑ
Static Drain-Sou	urce ON Resistance	R _{DS (ON)}	$V_{GS} = 10V, I_D = 5A$		0.74	1. 0	Ω
Forward Transco	onductance	g FS	$V_{DS} = 10V, I_{D} = 5A$	3.4	6.8		S
Input Capacitano	ce	C _{ISS}			1500		
Reverse Transfe	er Capacitance	C _{RSS}	$V_{DS} = 20V, V_{GS} = 0V, f = 1MHz$		13		pF
Output Capacita	nce	Coss			140		
Total Gate Char	ge	Q_{G}			38		
Gate-Source Ch	narge	Q_{GS}	I _D = 10A, V _{DD} ≈ 400V, V _{GS} = 10V		21		nC
Gate-Drain Cha	irge	Q_{GD}			17		
	Turn-on Delay Time	t _{ON}	٩		55		
	Turn-on Rise Time	t _R	R _L =60Ω \(\frac{1}{2}\) In-5 \(\lambda\)		15		
Switching Time	Turn-off Delay Time	t _{OFF}	R _L =60Ω I _D =5A Vout		145		
	Turn-off Fall Time	t _F	V _{GS} 0V 50Ω V _{DD} ≈ 300V t _P =10 μ s, Duty ≤1%		27		ns

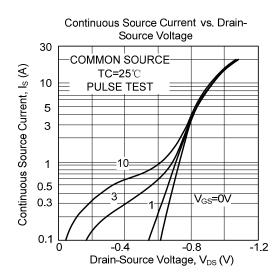
■ SOURCE-DRAIN DIODE CHARACTERISTICS (T_A = 25°C)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Diode Forward Voltage	V_{SD}	$V_{GS} = 0V, I_{S} = 10A$			-1.7	V
Continuous Source Current (body diode)	Is	Integral Reverse p-n Junction			10	Α
Pulse Source Current (body diode)	I _{SM}	Diode in the MOSFET Drain Gate O Source			30	Α
Reverse Recovery Time	t _{RR}	$V_{GS} = 0V, I_{S} = 10A,$		1600		ns
Reverse Recovery Charge Q _{RR}		dl _F /dt = 100 A/μs		17		μC


■ TEST CIRCUIT AND WAVE FORM




UK2996 MOSFET


■ TYPICAL CHARACTERISTICS

UK2996 MOSFET

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

