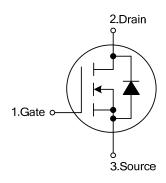


UNISONIC TECHNOLOGIES CO., LTD

7N10 Power MOSFET

7A, 100V N-CHANNEL POWER MOSFET

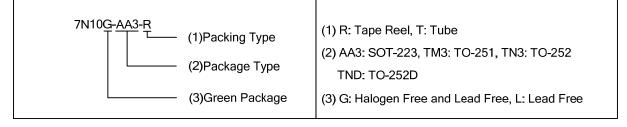
DESCRIPTION


The UTC 7N10 is an N-Channel enhancement mode power MOSFET, providing customers with excellent switching performance and minimum on-state resistance. The UTC 7N10 uses planar stripe and DMOS technology to provide perfect quality. This device can also withstand high energy pulse in the avalanche and the commutation mode.

The UTC 7N10 is generally applied in low voltage applications, such as DC motor controls, audio amplifiers and high efficiency switching DC/DC converters.

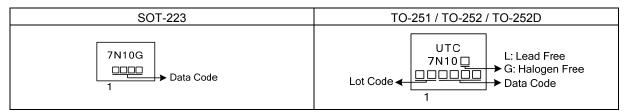
FEATURES

- * $R_{DS(ON)}$ < 0.35 Ω @ V_{GS} =10V, I_{D} =3.5A
- * Fast Switching
- * Improved dv/dt Capability


SYMBOL

ORDERING INFORMATION

Ordering Number		Doolsons	Pin Assignment			Dookina	
Lead Free	Halogen Free	Package	1	2	3	Packing	
-	7N10G-AA3-R	SOT-223	G	D	S	Tape Reel	
7N10L-TM3-T	7N10G-TM3-T	TO-251	G	D	S	Tube	
7N10L-TN3-R	7N10G-TN3-R	TO-252	G	D	S	Tape Reel	
7N10L-TND-R	7N10G-TND-R	TO-252D	G	D	S	Tape Reel	


Note: Pin Assignment: G: Gate D: Drain S: Source

SOT-223 TO-252 TO-252D TO-251

7N10

■ MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_A =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain -Source Voltage		V _{DSS}	100	V	
Gate-Source Voltage		V_{GSS}	±25	V	
Continuous Drain Current	T _C =25°C	I_D	7	Α	
	$T_C = 70^{\circ}C$	I _D	6.8	Α	
Pulsed Drain Current (Note 2)		I _{DM}	16	Α	
Avalanche Current (Note 2)		I _{AR}	7	Α	
Repetitive Avalanche Energy (Note 2)		E _{AR}	0.2	mJ	
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	50	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	6.0	V/ns	
Power Dissipation	SOT-223		2.0	W	
	TO-251/TO-252 TO-252D		2.5		
Derate above 25°C	SOT-223	P _D	0.016		
	TO-251/TO-252 TO-252D	0.02		W/°C	
Operating Junction Temperature		TJ	-55 ~ +150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

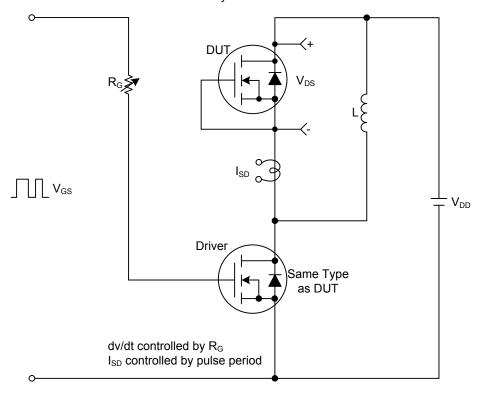
- 2. Repetitive Rating : Pulse width limited by maximum junction temperature
- 3. L =26mH, I_{AS} =1.7A, V_{DD} =25V, R_{G} =25 Ω Starting T_{J} =25 $^{\circ}$ C
- 4. $I_{SD} \le 7.3A$, di/dt $\le 300A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

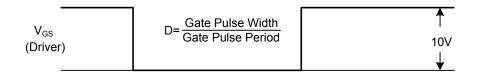
■ THERMAL DATA

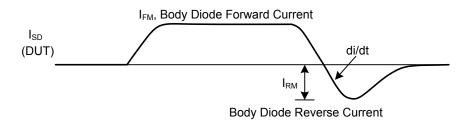
PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	SOT-223	θ_{JA}	62.5		
	TO-251/TO-252		50	°C/W	
	TO-252D		30		
Junction to Case	SOT-223	$ heta_{ extsf{JC}}$	12		
	TO-251/TO-252		7.5	°C/W	
	TO-252D				

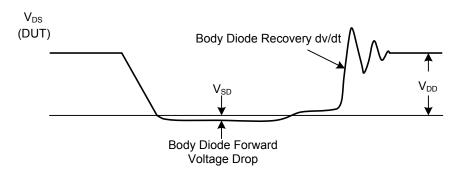
Note: When mounted on the minimum pad size recommended (PCB Mount)

■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

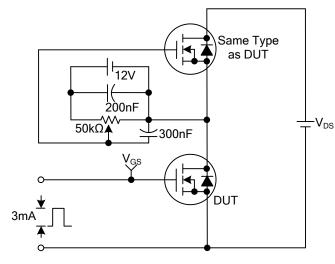

		l .							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	100			V			
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{J}$	Reference to 25°C, I _D =250µA		0.1		V/°C			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =100V, V _{GS} =0V			1	μΑ			
Dialii-Source Leakage Current		V _{DS} =80V, T _C =125°C			10	μΑ			
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 25V, V_{DS} = 0V$			±100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V			
Static Drain-Source On-Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 3.5A$		0.144	0.35	Ω			
Forward Transconductance	g fs	V _{DS} =40V, I _D =0.85A (Note 1)		1.85		S			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}			380	450	pF			
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		70	85	pF			
Reverse Transfer Capacitance	C _{RSS}	7		11	15	pF			
SWITCHING PARAMETERS									
Total Gate Charge	Q_{G}	\\ -40\\ \\ -50\\ \ \-4.2A		14.3		nC			
Gate Source Charge	Q_{GS}	V _{GS} =10V, V _{DS} =50V, I _D =1.3A (Note 1,2)		4.2		nC			
Gate Drain Charge	Q_{GD}			3.2		nC			
Turn-ON Delay Time	t _{D(ON)}			30	38	ns			
Turn-ON Rise Time	t _R	V_{DD} =30V, I_{D} =0.5A, R_{G} =25 Ω		40	50	ns			
Turn-OFF Delay Time	t _{D(OFF)}	(Note 1,2)		80	90	ns			
Turn-OFF Fall-Time	t _F]		35	40	ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Continuous Drain-Source Diode					7	Α			
Forward Current	I _S				1	А			
Maximum Pulsed Drain-Source Diode	le::				16	Α			
Forward Current	I _{SM}				10	А			
Drain-Source Diode Forward Voltage	V _{SD}	I _S =7A, V _{GS} =0V			1.5	V			
Reverse Recovery Time	t _{rr}	V _{GS} =0V, I _S =7.3A,		70		ns			
Reverse Recovery Charge	Q_{RR}	di _F /dt=100A/μs		150		nC			

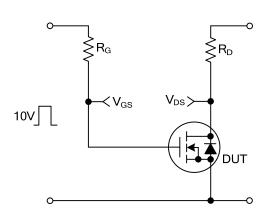

Notes: 1. Pulse Test: Pulse width \leq 300 μ s, Duty cycle \leq 2%

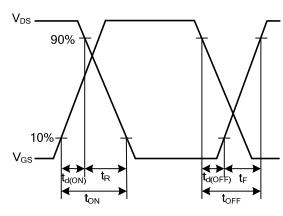

^{2.} Essentially independent of operating temperature


■ TEST CIRCUITS AND WAVEFORMS

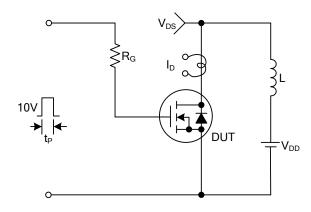
Peak Diode Recovery dv/dt Test Circuit & Waveforms

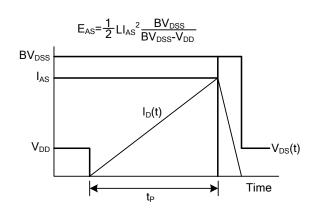



■ TEST CIRCUITS AND WAVEFORMS (Cont.)

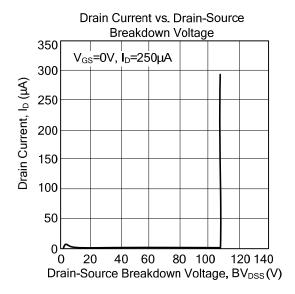

10V Q_G Q_G Charge

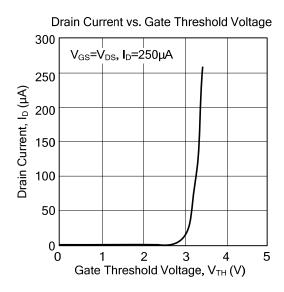
Gate Charge Test Circuit

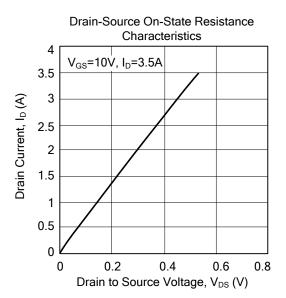

Gate Charge Waveforms

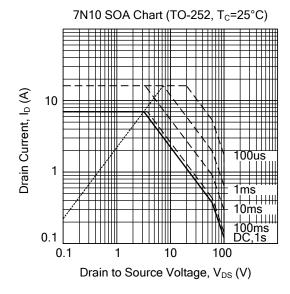

Resistive Switching Test Circuit

Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.