

UNISONIC TECHNOLOGIES CO., LTD

UTD3055

Preliminary

POWER MOSFET 12 AMPS, 60 VOLTS N-CHANNEL DPAK

DESCRIPTION

The UTC **UTD3055** is an N-channel Power MOSFET, and it can withstand high energy in the avalanche and commutation modes.

The UTC **UTD3055** is needed for applications, such as power supplies, converters and power motor controls which require low voltage and high speed switching. These devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

FEATURES

* I_{DSS} and $V_{DS(on)}$ Specified At Elevated Temperature

- * Avalanche Energy Specified
- SYMBOL

ORDERING INFORMATION

Ordering Number	Daakaga	Pin Assignment			Deaking	
	Fackage	1	2	3	Packing	
UTD3055G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: D; Drain, G: Gate, S: Source

UTD3055G- <u>TN3-R</u>	(1) R: Tape Reel
(2)Package Type	(2) TN3: TO-252
(3)Halogen Free	(3) G: Halogen Free

■ **ABSOLUTE MAXIMUM RATINGS** (T_c = 25°C unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		VDSS	60	V
Drain-Gate Voltage (Res=1.0MQ)		VDGR	60	V
		VGS	±20	V
Gate-Source Voltage	Non-Repetitive (t _P ≤10µs)	V _{GSM}	±25	V
	Continuous @ 25°C	I _D	12	А
Drain Current	Continuous @ 100°C	I _D	7.3	А
	Single Pulse (t _P ≤10µs)	I _{DM}	37	А
Single Pulse Drain-to-Source Avalanche				
Energy – Starting $T_J = 25^{\circ}C$		E _{AS}	72	mJ
$(V_{DD} = 25 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{L} = 12 \text{ A}, \text{ L} = 1.0 \text{ mH}, \text{ R}_{G} = 25 \Omega)$				
Total Power Dissipation @ 25°C			48	W
Total Power Dissipation @ $T_A = 25^{\circ}C$, when mounted to		P _D	1 75	۱۸/
minimum recommended pad size			1.75	٧V
Operating Junction Temperature		TJ	-55~175	°C
Storage Temperature		T _{STG}	-55~175	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	100	W/°C
Junction to Case	θ _{JC}	3.13	W/°C

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250µA, V _{GS} =0V	60			V		
		Temperature Coefficient (Positive)		65		mV/°C		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			10			
		V _{DS} =60V, V _{GS} =0V, T _J =150°C			100	μΑ		
Gate- Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0			100	nA		
ON CHARACTERISTICS (Note)								
Cata Threehold Vallers	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	2.0	2.7	4.0	V		
Gale Theshold Voltage		Temperature Coefficient (Negative)		5.4		mV/°C		
Static Drain-Source On-State	Б	V _{GS} =10V, I _D =6.0A		0 10	0.15	0		
Resistance	RDS(ON)			0.10	0.15	12		
Drain-Source On-Votlage (V _{GS} =10V)	V _{DS(on)}	I _D =12A		1.3	2.2	V		
		I _D =6.0A, T _J =150°C			1.9			
Forward Transconductance	g fs	V _{DS} =7.0V, I _D =6.0A	4.0	5.0		S		
DYNAMIC PARAMETERS								
Input Capacitance	CISS			410	500	pF		
Output Capacitance	C _{OSS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		130	180	pF		
Reverse Transfer Capacitance	C _{RSS}			25	50	pF		

Note: Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%.

■ ELECTRICAL CHARACTERISTICS (Cont.)

					MANY		
	STMBOL	TEST CONDITIONS		ITP	IVIAX	UNIT	
SWITCHING PARAMETERS (Note 2)		1		i	i		
Gate Charge	QT			12.2	17	nC	
	Q ₁	\/10\/_\/48\/_L12A		3.2		nC	
	Q ₂	$V_{GS} = 10V, V_{DS} = 46V, I_D = 12A$		5.2		nC	
	Q_3			5.5		nC	
Turn-ON Delay Time	t _{D(ON)}			7.0	10	ns	
Rise Time	t _R	V _{DD} =30V, V _{GS} =10V, I _D =12A,		34	60	ns	
Turn-OFF Delay Time	t _{D(OFF)}	R _G =9.1Ω		17	30	ns	
Fall-Time	t _F	1		18	50	ns	
SOURCE- DRAIN DIODE RATINGS AN	D CHARAC	TERISTICS					
Drain-Source Diode Forward Voltage	N/	I _S =12A, V _{GS} =0V		1.0	1.6	V	
(Note 1)	VSD	I _S =12A, V _{GS} =0V, T _J =150°C		0.91		v	
	t _{RR}			56		ns	
Reverse Recovery Time	t _A			40		ns	
	t _B	$I_{S} = IZA, V_{GS} = 0V, US/UI = IOOA/\mu S$		16		ns	
Reverse Recovery Charge	Q _{RR}			0.128		μC	
INTERNAL PACKAGE INDUCTANCE							
Internal Drain Inductance							
(Measured from the drain lead 0.25"	L _D			4.5		nH	
from package to center of die)							
Internal Source Inductance							
(Measured from the source lead 0.25,	Ls			7.5		nH	
from package to source bond pad)							

Note: 1. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%.

2. Switching characteristics are independent of operating junction temperature.

UTD3055

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

