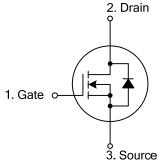


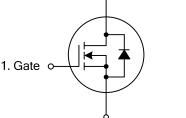
UNISONIC TECHNOLOGIES CO., LTD

UTD454 Power MOSFET

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

DESCRIPTION

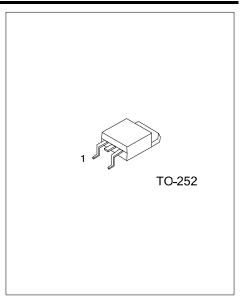

The UTC UTD454 is an N-channel enhancement MOSFET providing perfect $R_{\text{DS}(\text{ON})}$ and low gate charge with UTC advanced technology.


The UTC UTD454 is intended for being used in PWM, load switching and general purpose applications.

FEATURES

- * $R_{DS(ON)}$ < 33 m Ω @ V_{GS} = 10V
- * $R_{DS(ON)}$ < 47 m Ω @ V_{GS} = 4.5V
- * $V_{DS}(V) = 40V$
- * I_D = 12 A @ V_{GS} = 10V
- * Low gate charge

SYMBOL



ORDERING INFORMATION

Ordering Number		Deelees	Pin Assignment			Daaldaa	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UTD454L-TN3-R	UTD454G-TN3-R	TO-252	G	D	S	Tape Reel	
UTD454L-TN3-T	UTD454G-TN3-T	TO-252	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

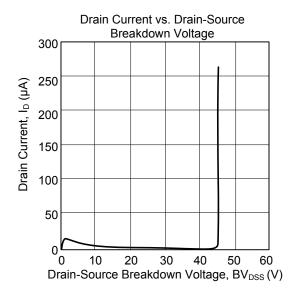
PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V_{DS}	40	V
Gate-Source Voltage	V_{GS}	±20	V
Continuous Drain Current (T _C =25°C)	I _D	12	Α
Pulsed Drain Current (Note 2)	I _{DM}	30	Α
Avalanche Current (Note 2)	I _{AR}	12	Α
Repetitive avalanche energy (L=0.1mH)(Note 2)	E _{AR}	20	mJ
Power Dissipation (T _C =25°C)	P_{D}	20	W
Junction Temperature	T_J	+150	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

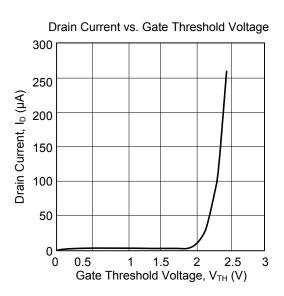
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

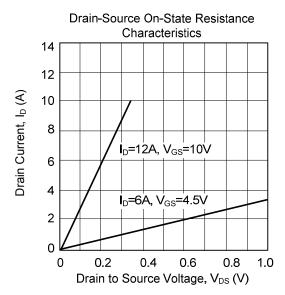
■ THERMAL CHARACTERISTICS

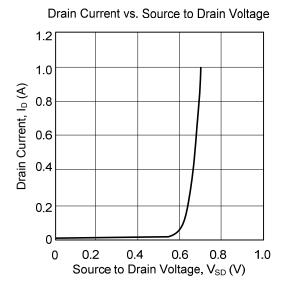
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	60	°C/W
Junction to Case	θ_{JC}	3	°C/W

Note: Surface mounted on 1 in² copper pad of FR4 board with 2oz


■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV_{DSS}	$I_D=250\mu A, V_{GS}=0V$	40			V	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =32V, V _{GS} =0V			1	μΑ	
Gate-Source Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±20V			±100	nA	
ON CHARACTERISTICS							
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.8	2.3	3	V	
On-State Drain Current	$I_{D(ON)}$	V _{GS} =10V, V _{DS} =5V				Α	
Drain to Source On-state Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =12A		25	33	mΩ	
Diam to Source On-State Resistance		V _{GS} =4.5V, I _D =6A		34	47	mΩ	
DYNAMIC PARAMETERS							
Input Capacitance	C _{ISS}			404	500	pF	
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =20V, f=1MHz		95	150	pF	
Reverse Transfer Capacitance	C _{RSS}			37	60	nC	
Gate resistance	R_{G}	V _{GS} =0V, V _{DS} =0V, f=1MHz		2.7		Ω	
SWITCHING PARAMETERS							
Turn-ON Delay Time	t _{D(ON)}			3.5		ns	
Turn-ON Rise Time	t _R	V_{GS} =10V, V_{DS} =20V, R_L =1.7 Ω ,		6		ns	
Turn-OFF Delay Time	t _{D(OFF)}	R_{GEN} =3 Ω		13.2		ns	
Turn-OFF Fall-Time	t _F			3.5		ns	
Total Gate Charge	Q_{G}			9.2		nC	
Gate Source Charge	Q_{GS}	V _{GS} =10V, V _{DS} =20V, I _D =12A		1.6		nC	
Gate Drain Charge	Q_{GD}			2.6		nC	
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS							
Drain-Source Diode Forward Voltage	V_{SD}	I _S =1A, V _{GS} =0V		0.76	1	V	
Diode Continuous Forward Current	Is				12	Α	
Reverse Recovery Time	t _{rr}	I _F =12A, dI/dt=100A/μs		22.9		ns	
Reverse Recovery Charge	Q_{RR}			18.3		nC	


Note: Pulse width ≤300µs, duty cycle≤0.5%.


^{2.} Pulse width limited by T_{J(MAX)}

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.