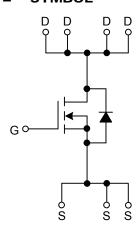


UTC UNISONIC TECHNOLOGIES CO., LTD

UT4392 **Power MOSFET**

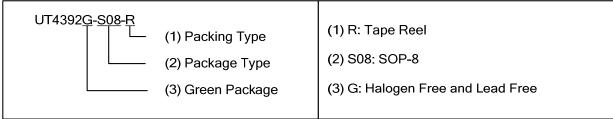
30V N-CHANNEL POWER MOSFET

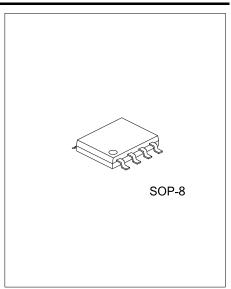

DESCRIPTION

The UT4392 uses UTC advanced technology to provide excellent R_{DS(ON)}, low gate charge and operation with low gate voltages. This device is suitable for being used in such applications: high-Side DC/DC Conversion, notebook and sever.

FEATURES

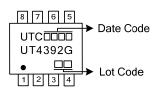
- * V_{DS}(V)=30V
- * I_D=12.5 A (V_{GS}=10V)
- * High Density Cell Design for Ultra Low On-resistance
- * $R_{DS(ON)}$ <11.5m Ω @ V_{GS} =10V
- * $R_{DS(ON)}$ <16.5m Ω @ V_{GS} =4.5V





ORDERING INFORMATION

Ordering Number	Package	Pin Assignment							Da alsia a	
		1	2	3	4	5	6	7	8	Packing
UT4392G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel


Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 5 UT4392

■ MARKING

UT4392 Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_A =25°C, unless otherwise specified.)

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V_{DSS}	30	V
Gate-Source Voltage	V_{GSS}	±20	V
Continuous Drain Current	I _D	12.5	Α
Pulsed Drain Current	I _{DM}	50	Α
Power Dissipation(T _A =25°C)	P_D	3.0	W
Junction Temperature	T_J	+150	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

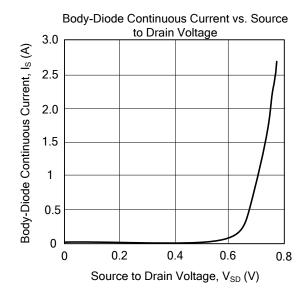
■ THERMAL DATA

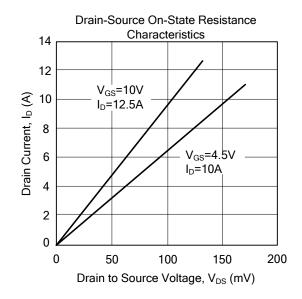
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient (PCB mounted)	θ_{JA}			50	°C/W
Junction to Case	θ _{JC}			25	°C/W

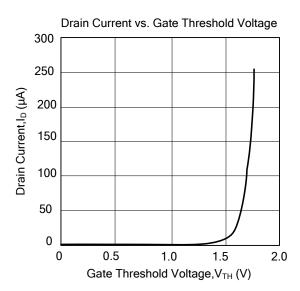
Notes: 1. Pulse width limited by the Maximum junction temperature.

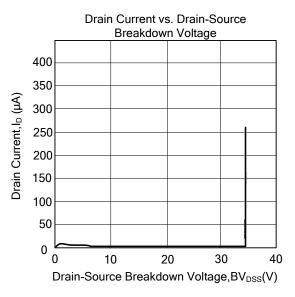
■ **ELECTRICAL CHARACTERISTICS** (T_A =25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0 V, I _D =250 μA	30			V				
Drain-Source Leakage Current	I_{DSS}	V _{DS} =24 V, V _{GS} =0 V			1.0	μΑ				
Gate-Source Leakage Current	I_{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nΑ				
ON CHARACTERISTICS										
Gate-Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_{DS} = 250 \mu A$	1	1.8	3	V				
On State Drain Current (Note 1)	$I_{D(ON)}$	$V_{DS} \ge 5V$, $V_{GS} = 10V$	30			Α				
Static Drain-Source On-Resistance(Note 1)	R _{DS(ON)}	V_{GS} =10 V, I_{D} =12.5 A		9	11.5	mΩ				
		V _{GS} =4.5 V, I _D =10 A		13	16.5	mΩ				
DYNAMIC PARAMETERS										
Input Capacitance	C _{ISS}	V _{DS} =15 V, V _{GS} =0 V,		2134		pF				
Output Capacitance	Coss	-f=1.0MHz, (Note 2)		343		pF				
Reverse Transfer Capacitance	C_{RSS}			134		pF				
SWITCHING PARAMETERS										
Total Gate Charge	Q_G	V _{DS} =15V, V _{GS} =10 V,		26		nC				
Gate Source Charge	Q_GS	$I_D = 15V$, $V_{GS} = 10V$, $I_D = 12.5A$, (Note 2)		6		nC				
Gate Drain Charge	Q_GD	ID = 12.5A, (Note 2)		5		nC				
Turn-ON Delay Time	$t_{D(ON)}$			17		ns				
Turn-ON Rise Time	t_R	V _{DD} =15V,I _D =1 A,V _{GEN} =10 V		3.5		ns				
Turn-OFF Delay Time	t _{D(OFF)}	R_G =6 Ω, R_L =15 Ω, (Note 3)		40		ns				
Turn-OFF Fall-Time	t_{F}			6		ns				
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS										
Diode Forward Voltage	V_{SD}	I _S =2.7 A, V _{GS} =0V		0.85	1.3	V				
Maximum Body-Diode Continuous Current	Is	(Note 4,5)			2.7	Α				


Notes: 1. Pulse Test: PW ≤300µS, Duty Cycle ≤2%


- 2. For DESIGN AID ONLY, not subject to production testing.
- 3. Switching time is essentially independent of operating temperature.
- 4. Pulse width limited by the Maximum junction temperature.
- 5. Surface Mounted on FR4 Board, t ≤ 10 sec.


^{2.} Surface Mounted on FR4 Board, t ≤ 10 sec.


UT4392 Power MOSFET

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.