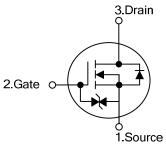


UTC UNISONIC TECHNOLOGIES CO., LTD

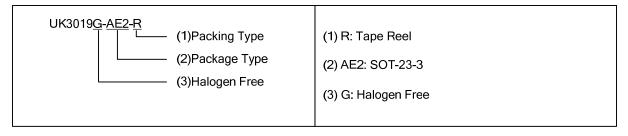
UK3019 **Preliminary Power MOSFET**

2.5V DRIVE SILICON **N-CHANNEL MOSFET**


DESCRIPTION

The UTC UK3019 is a silicon N-channel MOSFET which has been designed to minimize on-state resistance while it provides rugged, reliable and fast switching performance. The product is particularly suited for low voltage, low current applications such as small servo motor controller, power MOSFET gate drivers, and other switching applications.

FEATURES


- * Min V_{DSS} =30V
- * $R_{DS(ON)} = 5\Omega(V_{GS} = 4V)$
- * $R_{DS(ON)} = 7\Omega(V_{GS} = 2.5V)$
- * Pulsed ID=400mA
- * Low Voltage Drive (2.5V)

SYMBOL

ORDERING INFORMATION

Ordering Number	Dookogo	Pin Assignment			Dooking	
	Package	1	2	3	Packing	
UK3019G-AE2-R	SOT-23-3	S	G	D	Tape Reel	

MARKING

SOT-23-3 (JEDEC TO-236)

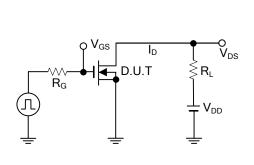
■ **ABSOLUTE MAXIMUM RATING** (Ta=25°C, unless otherwise specified)

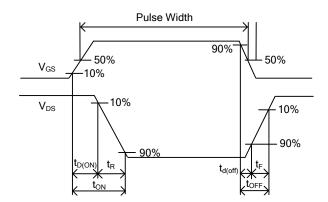
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		V _{GSS}	±20	V
Drain Current	Continuous	I _D	100	mA
	Pulsed (Note 2)	I _{DP}	400	mA
Power Dissipation (Note 3)		P _D		
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pw≤10µs, Duty cycle≤50%
- 3. With each pin mounted on the recommended lands.


■ THERMAL DATA


PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	625	°C/W	

■ **ELECTRICAL CHARACTERISTICS** (Ta=25°C, unless otherwise specified)

PARAMETER	SYMBOL	_ TEST CONDITIONS		TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage BV _{DSS}		V_{GS} =0V, I_D =10 μ A				V	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =30V, V _{GS} =0V			1.0	μΑ	
Gate-Source Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±20V			±1	μΑ	
ON CHARACTERISTICS							
Gate Threshold Voltage	$V_{GS(TH)}$	V _{DS} =3V, I _D =100μA	0.8		1.5	V	
Ctatic duals accuracy as atota resistance	R _{DS(ON)}	$I_D = 10$ mA, $V_{GS} = 4$ V		5	8	Ω	
Static drain-source on-state resistance		$I_D = 1 \text{mA}, V_{GS} = 2.5 \text{V}$		7	13	Ω	
DYNAMIC PARAMETERS							
Input Capacitance	C _{ISS}			13		pF	
Output Capacitance	Coss	V_{DS} =5V, V_{GS} =0V, f = 1MHz		9		pF	
Reverse Transfer Capacitance	C _{RSS}			4		pF	
SWITCHING PARAMETERS							
Turn-ON Delay Time	$t_{D(ON)}$			15		ns	
Turn-ON Rise Time	t _R	t_R $V_{GS} = 5V, V_{DD} \approx 5V$		35		ns	
Turn-OFF Delay Time	t _{D(OFF)}	$I_D = 10 \text{mA}, R_L = 500 \Omega, R_G = 10 \Omega$		80		ns	
Turn-OFF Fall-Time	t _F			80		ns	

■ TEST CIRCUITS AND WAVEFORMS

Switching Time Measurement Circuit

Switching Time Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.