NPN EPITAXIAL TRANSISTOR

- DESCRIPTION

The UTC UD9J is an dual transistor; it uses UTC's advanced technology to provide the customers with low collector -emitter saturation voltage, etc.

The UTC UD9J is suitable for switching, inverter circuit and driver circuit applications.

- FEATURES

* Both the DTA114Y chip and DTC114Y chip in a SOT-353 package.
* NPN/PNP silicon transistor(Built-in resistor type)
* Low collector-emitter saturation voltage
* With built-in bias resistors
* Simplify circuit design
- EQUIVALENT CIRCUIT

- ORDERING INFORMATION

Ordering Number	Package	Pin Assignment				Packing	
		1	2	3	4		
UD9JG-AL5-R	SOT-353	G1	I	G2	O	O	Tape Reel

Note: Pin Assignment: G: GND I: Input O: Output

UG9JG-AL5-R		
	(1)Packing Type	(1) R: Tape Reel
	(2)Package Type	(2) AL5: SOT-353
	(3) G: Halogen Free and Lead Free	

- MARKING

Preliminary

- ABSOLUTE MAXIMUM RATINGS ($T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS		UNIT
		TR1	TR2	
Supply Voltage	V_{CC}	50	-50	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	$-6 \sim+40$	$-40 \sim+6$	V
Output Current	$\mathrm{I}_{\text {OUT }}$	70	-70	mA
	$\mathrm{I}_{\mathrm{C}(\mathrm{MAX})}$	100	-100	mA
Total Power Dissipation (Note 2)	P_{D}	150		mW
Junction Temperature	T_{J}	+150		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
2. 120 mW per element must not be exceeded.

- ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

TR1

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	$\mathrm{V}_{\text {(IOFF) }}$	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$, lout $=100 \mu \mathrm{~A}$			0.3	V
	$\mathrm{V}_{1(0 N)}$	$\mathrm{V}_{\text {OUT }}=0.3 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$	1.4			V
Output Voltage	$\mathrm{V}_{\mathrm{O}(\mathrm{ON})}$	$\mathrm{l}_{\text {OUT }}=5 \mathrm{~mA}, \mathrm{l}_{1 \mathrm{~N}}=0.25 \mathrm{~mA}$		0.1	0.3	V
Input Current	IN	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$			0.88	mA
Output Current	$\mathrm{l}_{\text {(OFF) }}$	$\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$			0.5	$\mu \mathrm{A}$
DC Current Gain	$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=5 \mathrm{~mA}$	68			
Input Resistance	R_{1}		7	10	13	K Ω
Resistance Ratio	$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$		3.7	4.7	5.7	
Transition Frequency	f_{T}	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-5 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$ (Note)		250		MHz

TR2

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	$\mathrm{V}_{\text {I(OFF) }}$	$\mathrm{V}_{\text {CC }}=-5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=100 \mu \mathrm{~A}$			-0.3	V
	$\mathrm{V}_{1(0 N)}$	$\mathrm{V}_{\text {OUT }}=-0.3 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=-1 \mathrm{~mA}$	-1.4			V
Output Voltage	$\left.\mathrm{V}_{\mathrm{O}} \mathrm{ON}\right)$	$\mathrm{l}_{\text {lout }}=-5 \mathrm{~mA}, \mathrm{l}_{\text {IN }}=-0.25 \mathrm{~mA}$		-0.1	-0.3	V
Input Current	$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{1 \mathrm{~N}}=-5 \mathrm{~V}$			-0.88	mA
Output Current	$\mathrm{l}_{\text {(OFF) }}$	$\mathrm{V}_{\mathrm{CC}}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$			-0.5	$\mu \mathrm{A}$
DC Current Gain	$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V}$, I IOUT $=-5 \mathrm{~mA}$	68			
Input Resistance	R_{1}		7	10	13	$\mathrm{K} \Omega$
Resistance Ratio	$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$		3.7	4.7	5.7	
Transition Frequency	f_{T}	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$ (Note)		250		MHz

[^0]
[^0]: UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

