UNISONIC TECHNOLOGIES CO., LTD

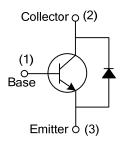
4126D

NPN EPITAXIAL SILICON TRANSISTOR

MIDDLING VOLTAGE FAST-SWITCHING NPN **POWER TRANSISTOR**

DESCRIPTION

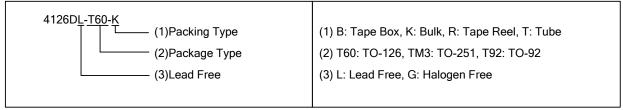
The UTC 4126D is a middling voltage NPN power transistor. it uses UTC's advanced technology to provide customers with high switching speed and high reliability, etc.


The UTC 4126D is suitable for commonly power amplifier circuit, electronic ballasts and energy-saving light etc.

FEATURES

- * High switching speed
- * High reliability

TO-251 TO-126 TO-92


SYMBOL

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
4126DL-T92-B	4126DG-T92-B	TO-92	В	С	Е	Tape Box	
4126DL-T92-K	4126DG-T92-K	TO-92	В	С	Е	Bulk	
4126DL-T92-R	4126DG-T92-R	TO-92	В	С	Е	Tape Reel	
4126DL-T60-K	4126DG-T60-K	TO-126	В	С	Е	Bulk	
4126DL-TM3-T	4126DG-TM3-T	TO-251	В	С	E	Tube	

E: Emitter Note: Pin Assignment: B: Base C: Collector

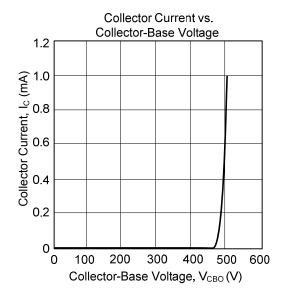
www.unisonic.com.tw 1 of 3

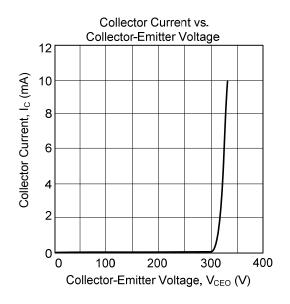
■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C)

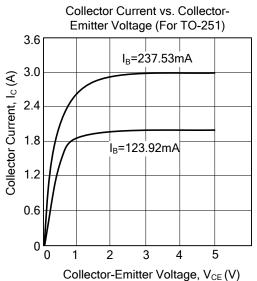
PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Emitter Voltage (V _{BE} =0)		V_{CES}	350	V
Collector-Emitter Voltage (I _B =0)		V_{CEO}	200	V
Emitter-Base Voltage		V_{EBO}	7	V
Collector Current	DC	Ic	3	Α
	Pulse (Note 2)	I _{CP}	6	Α
Base Current	DC	I _B	1	Α
	Pulse (Note 2)	I _{BP}	2	Α
Total Dissipation	TO-92	Ъ	1.5	W
	TO-126/TO-251	P _C	40	W
Junction Temperature		TJ	150	°C
Storage Temperature Range		T _{STG}	-55~+150	°C

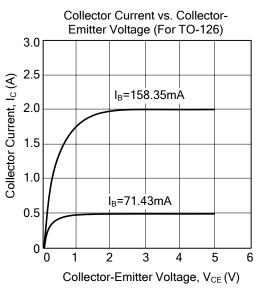
Notes: 1. Absolute maximum ratings are stress ratings only and functional device operation is not implied. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

■ THERMAL CHARACTERISTICS


PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Case	TO-92	0	80	°C/W	
	TO-126/TO-251	θJC	3.125	°C/W	


■ ELECTRICAL CHARACTERISTICS


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Base Breakdown Voltage	BV_CBO	I _C =1mA, I _B =0				V
Collector-Emitter Breakdown Voltage	BV_CEO	I _C =10mA, I _B =0	200			V
Emitter-Base Breakdown Voltage	BV_{EBO}	$I_E=1mA$, $I_C=0$	7			V
Collector Cut-Off Current	I _{CBO}	V _{CB} =350V, I _E =0			100	μΑ
Collector-Emitter Cut-Off Current	I _{CEO}	V _{CE} =200V, I _B =0			50	μΑ
Emitter Cut-Off Current	I _{EBO}	V_{EB} =7V, I_C =0			10	μΑ
0-11-4-5 5-344-5 0-45-545-5 1/-14-55	$V_{CE(SAT)1}$	I _C =1A, I _B =0.2A			0.8	V
Collector-Emitter Saturation Voltage	$V_{CE(SAT)2}$	I _C =3A, I _B =0.6A			1.6	V
Base-Emitter Saturation Voltage	$V_{BE(SAT)}$	I _C =2A, I _B =0.5A			1.5	V
DO Owner at Oak	h _{FE1}	I _C =0.5A,V _{CE} =5V	8		50	
DC Current Gain	h _{FE2}	$I_C=2A,V_{CE}=5V$	7			
Transition Frequency	f_T	I _C =0.5A, V _{CE} =10V	4			MHz
Storage Time	t _S	V _{CC} =24V, I _C =0.5A, I _{B1} =-I _{B2} =0.1A			4	μs
Fall Time	t _F				0.7	μs


^{2.} Pulse Test: Pulse Width=5.0ms, Duty Cycle<10%.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.