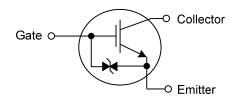
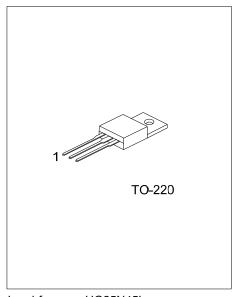
UG25N45

Preliminary

NPN SILICON TRANSISTOR

N-CHANNEL INSULATED GATE BIPOLAR TRANSISTOR

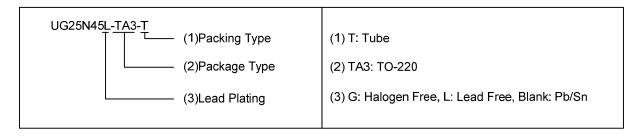

■ DESCRIPTION


UTC **UG25N45** is an N-channel NPN transistor. It can be used in strobe flash applications

■ FEATURES

- * Very high input impedance
- * Very high pick current capability
- * Gate drive: 4.5V

■ SYMBOL



Lead-free: UG25N45L Halogen-free: UG25N45G

■ ORDERING INFORMATION

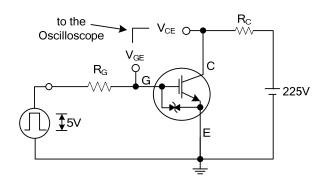
Ordering Number			Dookogo	Pin Assignment			Dooking
Normal	Lead Free	Halogen Free	Package	1	2	3	Packing
UG25N45-TA3-T	UG25N45L-TA3-T	UG25N45G-TA3-T	TO-220	G	С	Е	Tube

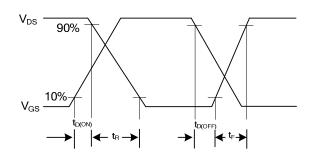
www.unisonic.com.tw 1 of

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT	
Collector-Emitter Voltage	V_{CEO}	450	V	
Gate-Emitter Voltage	V_{GEO}	±6	V	
Pulsed Gate-Emitter Current	I_{GEP}	±8	Α	
Pulsed Collector Current	I _{CP}	150	Α	
Power Dissipation @ T _C =25°C	P_{D}	2.5	W	
Junction Temperature	T_J	+150	Ŝ	
Operating Temperature	T_{OPR}	-55 ~ + 150	°C	
Storage Temperature	T_{STG}	-55 ~ + 150	Ĉ	

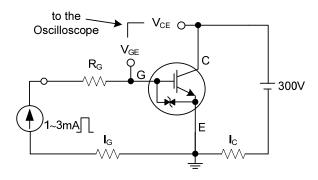
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

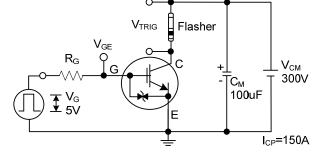

■ THERMAL DATA


PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Junction-to-Ambient	θ_{JA}			50	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Collector-Emitter Saturation Voltage	$V_{CE(SAT)}$	V _{GE} =4.5V, I _{CP} =150A (Pulsed)		6	8	V			
Collector-Emitter Leakage Current	I _{CES}	V _{CE} =450V, V _{GE} =0 V			10	uA			
Gate-Emitter Leakage Current	I_{GES}	V _{GE} =±6V, V _{CE} =0V			10	uA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{\text{GE(TH)}}$	V _{CE} =V _{GE} , I _C =250uA	0.35		1.2	V			
DYNAMIC CHARACTERISTICS									
Input Capacitance	CIES			2227		pF			
Output Capacitance	C _{OES}	V _{GE} =0V, V _{CE} =25V, f=1.0MHz		200		pF			
Reverse Transfer Capacitance	C _{RES}]		79		pF			
SWITCHING CHARACTERISTICS									
Turn-On Delay Time	t _{D(ON)}			11.5		ns			
Turn-On Rise Time	t _R	V_{CC} =225V, I_{C} =50A, R_{G} =25 Ω ,		24.5		ns			
Turn-Off Delay Time	t _{D(OFF)}	V _{GE} =10V		150		ns			
Turn-Off Fall Time	t _F			3.3		ns			
Total Gate Charge	Q_{G}			64.5		nC			
Gate-Emitter Charge	Q_GE	V _{CE} =360V, V _{GE} =4.5V, I _C =50A		7		nC			
Gate-Collector Charge	Q_GC			30		nC			


■ TYPICAL CHARACTERISTICS



Switching Test Circuit

Switching Waveforms

Gate Charge Test Circuit

Application Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.