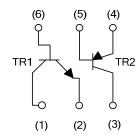
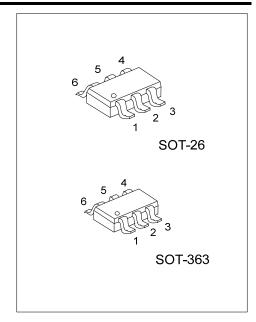


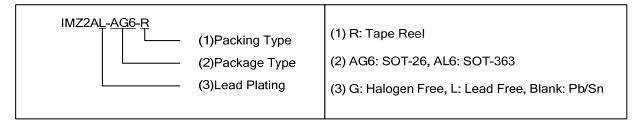
UTC UNISONIC TECHNOLOGIES CO., LTD

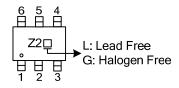

IMZ2A DUAL TRANSISTOR


POWER MANAGEMENT (DUAL TRANSISTOR)

FEATURES

* Two a 9014 chip in a SMT package.


EQUIVALENT CIRCUITS



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment					Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	Packing
IMZ2AL-AG6-R	IMZ2AG-AG6-R	SOT-26	C1	E1	C2	E2	B2	B1	Tape Reel
IMZ2AL-AL6-R	IMZ2AG-AL6-R	SOT-363	C1	E1	C2	E2	B2	B1	Tape Reel

MARKING

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_A =25°C)

PARAMETER		SYMBOL	RATINGS	UNIT	
Callagton Book Voltage	TR1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	60	.,	
Collector-Base Voltage	TR2	V _{CBO}	-60	V	
Calle stor Freitter Valtore	TR1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	50	V	
Collector-Emitter Voltage	TR2	V _{CEO}	-50		
Freitter Base Valters	TR1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	V	
Emitter-Base Voltage	TR2	V_{EBO}	-6	V	
Calla eta e Curra et	TR1		150	A	
Collector Current	TR2	Ic	-150	mA	
Callegton Bourge Discipation (Tatal)	SOT-26	D-	300 (Note1)	\^/	
Collector Power Dissipation (Total)	SOT-363	Pc	200	mW	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

Note: 1. 200mW per element must not be exceeded.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
TR1							
Collector-Base Breakdown Voltage	BV_CBO	I _C =50μA	60			V	
Collector-Emitter Breakdown Voltage	BV_CEO	$I_C = 1mA$	50			V	
Emitter-Base Breakdown Voltage	BV _{EBO}	I _E = 50μA	7			V	
Collector Cut-Off Current	I _{CBO}	V _{CB} =60V			0.1	μΑ	
Emitter Cut-Off Current	I _{EBO}	V _{EB} =7V			0.1	μΑ	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	$I_C / I_B = 50 \text{mA/5mA}$			0.4	V	
DC Current Transfer Ratio	h _{FE}	V_{CE} = 6V, I_{C} = 1mA	120		560		
Transition Frequency	f⊤	V_{CE} =12V, I_{E} =-2mA, f =100MHz (Note)		180		MHz	
Output Capacitance	Сов	V _{CB} = 12V, I _E =0A, f=1MHz		2	3.5	pF	
TR2							
Collector-Base Breakdown Voltage	BV_CBO	$I_C = -50\mu A$	-60			V	
Collector-Emitter Breakdown Voltage	BV_CEO	$I_C = -1 \text{mA}$	-50			V	
Emitter-Base Breakdown Voltage	BV_{EBO}	I _E = -50μA	-6			V	
Collector Cut-Off Current	I _{CBO}	V _{CB} = -60V			-0.1	μΑ	
Emitter Cut-Off Current	I _{EBO}	V _{EB} = -6V			-0.1	μΑ	
Collector-Emitter Saturation Voltage	$V_{CE(SAT)}$	$I_C / I_B = -50 \text{mA}/-5 \text{mA}$			-0.5	V	
DC Current Transfer Ratio	h_{FE}	V_{CE} = -6V, I_{C} = -1mA	120		560		
Transition Frequency	f _T	V _{CE} =-12V, I _E =2mA, f=100MHz (Note)		140		MHz	
Output Capacitance	C_OB	V _{CB} = -12V,I _E =0A, f=1MHz		4	5	pF	

Note: Transition frequency of the device.

^{2.} Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.