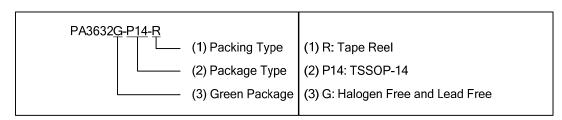
PA3632 Advance CMOS IC

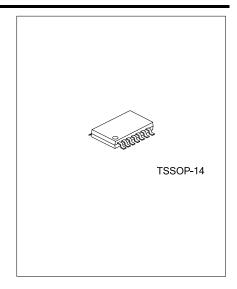
DIRECT 2-VRMS AUDIO LINE DRIVER WITH ADJUSTABLE GAIN

■ DESCRIPTION

The UTC **PA3632** is a pop-free stereo line driver with the integrated charge pump generating the negative supply rail which allows the removal of the output DC-blocking capacitors. The UTC **PA3632** provides a clean, pop-free ground-biased audio signal. The UTC **PA3632** is capable of driving 2VRMS into a 10k Ω load with 3.3V supply voltage. The device has differential inputs and uses external resistors for flexible gain setting. Gain can be configured individually for each channel.

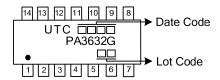
The UTC **PA3632** has built-in active-mute control for pop-free audio on/off control. The UTC **PA3632** has an external under-voltage detector that mutes the output when monitored voltage drop below set value.

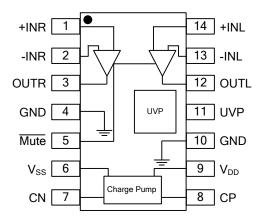

Using the UTC **PA3632** in audio products can reduce component count considerably compared to traditional headphone amplifiers.



- * Low THD+N<0.01% at 2Vrms Into $10k\Omega$
- * Stereo Direct Audio Line driver 2Vrms Into 10KΩ With 3.3V Supply
- * Integrated Charge Pump Generates Negative Supply Rail
- * High SNR, >90dB
- * Ground-Referenced Outputs Eliminate
- DC-Blocking Capacitors
- * Differential Input and Single-Ended Output
- * Adjustable Gain by External Gain-Setting Resistors
- * Pop-Free Under-Voltage Protection
- * Short-Circuit Protection
- * Click- and Pop-Reduction Circuitry
- * Active Mute Control for Pop-Free Audio On/Off Control

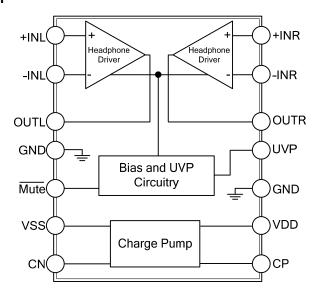
ORDERING INFORMATION


Ordering Number	Package	Packing
PA3632G-P14-R	TSSOP-14	Tape Reel



<u>www.unisonic.com.tw</u> 1 of 6

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	+INR	Right-channel OPAMP positive input
2	-INR	Right-channel OPAMP negative input
3	OUTR	Right-channel OPAMP output
4, 10	GND	Ground
5	Mute	Mute, active-low
6	V_{SS}	Supply voltage
7	CN	Charge-pump flying capacitor negative connection
8	CP	Charge-pump flying capacitor positive connection
9	V_{DD}	Positive supply
11	UVP	Under-voltage protection; internal pull-up, unconnected if UVP function is unused.
12	OUTL	Left-channel OPAMP output
13	-INL	Left-channel OPAMP negative input
14	+INL	Left-channel OPAMP positive input

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (over operating free-air temperature range, unless otherwise noted)

PARAMETER	SYMBOL	RATINGS	UNIT
V _{DD} to GND		-0.3~ 4	V
Input Voltage, V _I		VSS-0.3~V _{DD} +0.3	V
Minimum Load Impedance-Line Outputs-OUTL, OUTR		600	Ω
Mute to GND, UVP to GND		-0.3~V _{DD} +0.3	V
Maximum Operating Junction Temperature Range	T_J	-40~150	°C
Storage Temperature Range	T_{STG}	-40~150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL INFORMATION

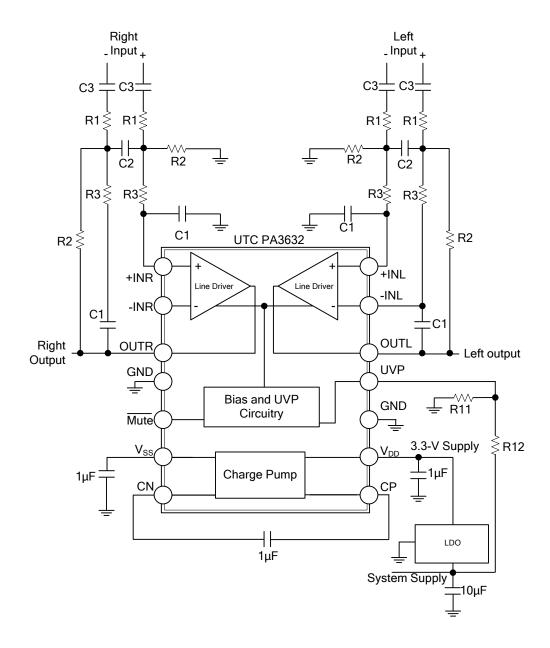
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	130	°C/W	
Junction to Case	$\theta_{ m JC}$	49	°C/W	

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply	V_{DD}	DC supply voltage	3	3.3	3.6	V
Load Impedance	R_L		0.6	10		kΩ
Low-Level Input Voltage	V _{IL}	Mute		40		%V _{DD}
High-Level Input Voltage	V _{IH}	Mute		60		%V _{DD}
Ambient Temperature	T _A		-40	25	85	°C

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, Charge pump: C_P=1µF, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Offset Voltage	V _{os}	V _{DD} =3.3V		0.5	1	mV
Power-Supply Rejection Ratio	PSRR			80		dB
High-Level Output Voltage	V _{OH}	V _{DD} =3.3V	3.1			V
Low-Level Output Voltage	V_{OL}	V _{DD} =3.3V			-3.05	V
External UVP Detect Voltage	V_{UVP_EX}			1.25		>
External UVP Detect Hysteresis	V _{UVP_EX_HYSTE}			5		
Current	RESIS			5		μΑ
Charge-Pump Switching Frequency	f _{CP}		200	300	400	kHz
High-Level Input Current, Mute	I _{IH}	V_{DD} =3.3V, V_{IH} = V_{DD}			1	μΑ
Low-Level Input Current, Mute	I _{IL}	V_{DD} =3.3V, V_{IL} =0V			1	μΑ
Supply Current	I _{DD}	V_{DD} =3.3V, no load, $\overline{\text{Mute}} = V_{DD}$, no load	5	14	25	mA
		V_{DD} =3.3V, no load, $\overline{\text{Mute}}$ = GND, disabled		14		mA


OPERATING CHARACTERISTICS

 $(V_{DD}=3.3V,\,R_{DL}=10k\Omega,\,R_{FB}=30k\Omega,\,R_{IN}=15k\Omega,\,T_{A}=25^{\circ}C,\,Charge\,pump:\,C_{P}=1\mu F,\,unless\,otherwise\,noted))$

<u>, 55 , 55 , 15 , 11</u>	, ,,	<u> </u>				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage, Outputs in Phase	Vo	THD+N=1%, V_{DD} =3.3V, f=1kHz, R_L =10k Ω	2	2.4		Vrms
Total Harmonic Distortion Plus Noise	THD+N	V _O =2 V _{RMS} , f=1kHz		0.002		%
Signal-to-Noise Ratio (Note 1)	SNR	A-weighted		105		dB
Dynamic Range	DNR	A-weighted		105		dB
Noise Voltage	V_N	A-weighted		11		μV
Output Impedance When Muted	Zo	Mute =GND		110		mΩ
Input-to-Output Attenuation When Muted		Mute =GND		80		dB
Crosstalk-L to R, R to L		V _O =1 V _{RMS}		-110		dB
Current Limit	I _{LIMIT}	PV _{DD} =3.3V		25		mA

Note: SNR is calculated relative to 2 V_{RMS} output.

TYPICAL APPLICATION CIRCUIT

R1 = $15k\Omega$, R2 = $30k\Omega$, R3 = $43k\Omega$, C1 = 47pF, C2 = 180pF Differential-input, single-ended output, second-order filter

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.