UNISONIC TECHNOLOGIES CO., LTD

PA7375

LINEAR INTEGRATED CIRCUIT

2 x 35W DUAL/OUAD POWER AMPLIFIER FOR CAR RADIO

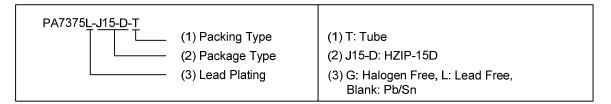
DESCRIPTION

The UTC PA7375 is a class AB car radio amplifier for car radio, it can work either in dual bridge or quad single ended configuration. The exclusive fully complementary structure of the output stage and the internally fixed gain guarantees the highest possible power performances with few external components. The on-board clip detector simplifies gain compression operation. The fault diagnostics makes it possible to detect mistakes during car radio set assembly and wiring in the car.

FEATURES

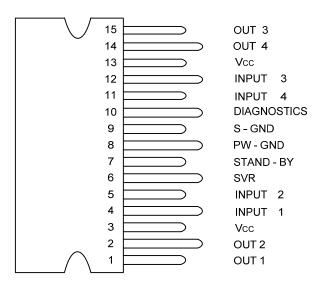
- * High output power capability:
 - $-2 \times 40W$ Max. $/4\Omega$
 - 2 x 25W / 4Ω@14.4V, 1KHz, 10%
 - 2 x 35W / 4Ω EIAJ
 - $-4 \times 7 \text{ W} / 4\Omega@14.4\text{V}, 1\text{KHz}, 10\%$
 - $-4 \times 12W / 2\Omega@14.4V$, 1KHz, 10%
- * Minimum external components:
 - No bootstrap capacitors
 - No Boucherot cells
 - Internally fixed gain (26dB BTL)
- * Stand-by function (CMOS compatible)
- * No audible pop during st-by operations
- * Diagnostics facility for:
 - Clipping
 - Out to GND short
 - Out to V_S short
 - Soft short at turn-on
 - Thermal shutdown proximity

HZIP-15D

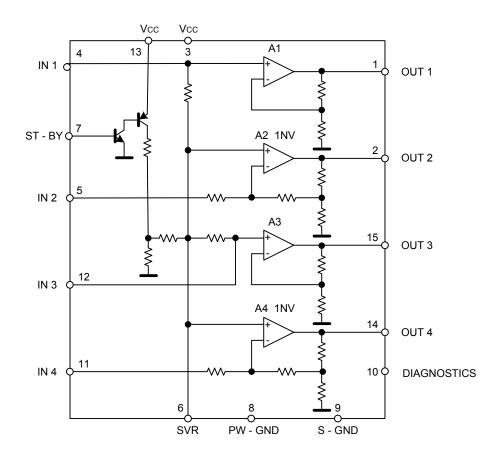

Lead-free: PA7375L Halogen-free: PA7375G

PROTECTIONS

- * Output AC/DC short circuit
- to GND
- to Vs
- across the load
- * Soft short at turn-on
- * Overrating chip temperature with soft thermal limiter
- * Load dump voltages urge
- * Very inductive loads
- * Fortuitous open GND
- * Reversed battery
- * ESD


ORDERING INFORMATION

	Dookogo	Dealine			
Normal	Lead Free Plating	Halogen Free	Package	Packing	
PA7375-J15-D-T	PA7375L-J15-D-T	PA7375G-J15-D-T	HZIP-15D	Tube	



www.unisonic.com.tw

■ PIN CONNECTION (Top view)

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMET	SYMBOL	RATINGS	UNIT	
Operating Supply Voltage	Vop	18	V	
DC Supply Voltage	Vs	28	V	
Peak Supply Voltage (for t = 50ms)	V _{S(PEAK)}	50	V	
Output Dook Current	not repetitive t = 100µs	_	4.5	Α
Output Peak Current	repetitive f > 10Hz	IO(PEAK)	3.5	Α
Power Dissipation	P_D	27	W	
Junction Temperature	T_J	150	°C	
Storage Temperature	T _{STG}	-40~+150	°C	

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (V_S=14.4V, R_L=4Ω, f=1KHz, T_a=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Supply Voltage Range		Vs			8		18	V	
ST-BY Threshold Voltage	IN	$V_{IN(ST-BY)}$					1.5	V	
	OUT	V _{OUT(ST-BY)}			3.5				
Voltage Saturation on pin 1	10	V _{SAT}	Sink Current a	at Pin 10 = 1mA			0.7	V	
Output Offset Voltage		V _{O(OFF)}					150	mV	
Input Noise Voltage		eN	$R_G = 0$; S.E.	Non Inverting Channels		2			
			"A" weighted,	Inverting Channels		5		μV	
			Bridge, R _G = 0; 22Hz ~ 22KHz			3.5		μV	
Total Quiescent Drain Current		ΙQ	R _L = ∞				200	mA	
ST-BY Pin Current(pin 7)		I _{ST-BY}	Max Driving Current Under Fault				5	mA	
			Play Mode Vpin7 = 5V				50	μA	
ST-BY Current Consumption	on	I _{ST-BY}	V _{ST-BY} = 0 ~ 1.5V				100	μA	
Clipping Detector Output	OFF	I _{CD(OFF)}	d = 1% (Note 2)			90		μΑ	
Average Current	ON	I _{CD(ON)}	d = 5% (Note 2)			160		μA	
Innut Immedence		R _{IN}	Single Ended		20	30		ΚΩ	
Input Impedance			Bridge		10	15			
Output Power		P _{OUT}	THD = 10%;	Bridge	23	25		W	
				Single Ended	6.5	7			
				Single Ended, $R_L = 2\Omega$		12			
0.4.4.5	Max.	P _{O(MAX)}	V _S = 14.4V, Bridge		36	40		W	
Output Power (Note 3)	EIAJ	P _{O(EIAJ)}	V _S = 13.7V, Bridge		32	35		W	
						0.02		0/	
Distortion		THD	$R_L = 4\Omega$ Single Ended, $P_{OUT} = 0.1 \sim 4W$ Bridge, $P_{OUT} = 0.1 \sim 10W$			0.03	0.3	%	
Cross Talk			f = 1KHz Single Ended			70		dB	
			f = 10KHz Single Ended			60			
			f = 1KHz Bridge		55				
			f = 10KHz Bridge			60			
Voltage Gain		0	Single Ended		19	20	21	dB	
		G_V	Bridge		25	26	27		
Voltage Gain Match G		G _V					0.5	dB	
Supply Voltage Rejection		SVR	R _G = 0, f = 300Hz		50			dB	
Stand-by Attenuation		A _{ST-BY}	P _{OUT} = 1W		80	90		dB	

Note: 1. See built-in S/C protection description

2. Pin 10 Pulled-up to 5V with 10K Ω ; R_L = 4 Ω

3. Saturated square wave output.

■ TYPICAL TEST AND APPLICATION CIRCUIT

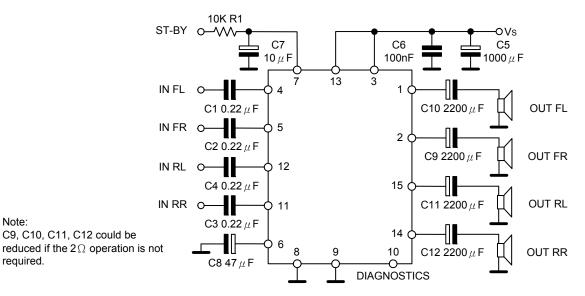


Figure 1: Quad Stereo

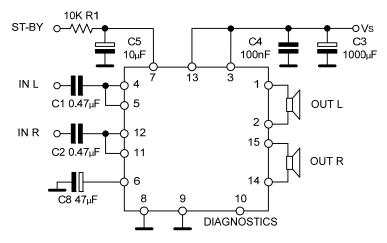


Figure 2: Double Bridge

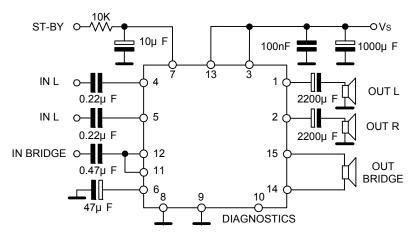


Figure 3: Stereo/Bridge

TYPICAL APPLICATION INFORMATION

High Application Flexibility

To avoid phase inconveniences causing sound alterations especially during the reproduction of low frequencies. The polarity of the speakers driven by the inverting amplifier must be reversed respect to those driven by non inverting channels when working in single ended conditions.

Easy Single Ended to Bridge Transition

The change from single ended to bridge configurations is made by a short circuit across the inputs.

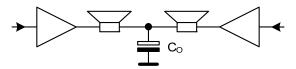
Gain Internally Fixed to 20dB in Single Ended, 26dB in Bridge

The function advantages: save component, PCB space and optimize output noise, supply voltage rejection and distortion

Silent Turn On/Off and Muting/Stand-by Function

At turn-on the device stays in muting condition for a time. The device outputs becomes insensitive to any kinds of signal that may be present at the input terminals while in muting.

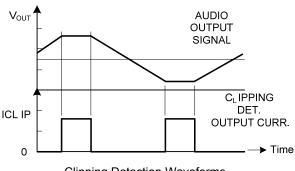
STAND-BY DRIVING


The stand by pin cannot be directly driven by a voltage source whose current capability is higher than 5mA. A series resistance has been inserted to limit the current at this pin and to smooth down the stand-by ON/OFF transitions. To ensure correct turn-on, a capacitor of at least 100nF from pin 7 to S-GND, with no resistance in between.

BUILT-IN SHORTCIRCUIT PROTECTION

To assure correct operation for the device itself and for the loudspeaker, a SOFT SHORT condition is signaled out during the TURN-ON PHASE.

That acts in a way to avoid that the device is turned on (by ST-BY) when a resistive path (less than 16 Ω) is present between the output and GND. When a current higher than 5mA is flowing into the ST-BY pin the involved circuitry is normally disabled.


That extra function becomes particularly attractive when, in the single ended configuration

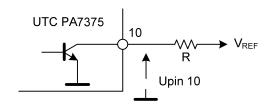
So if the output capacitor Cout for any reason is shorted, the loudspeaker will not be damaged.

Diagnostics Facility

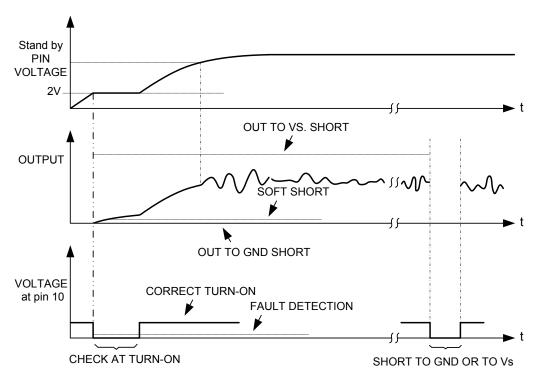
The IC is equipped with a diagnostic circuitry able to detect the information(clipping in the output signal, thermal shutdown, and output fault including short to GND, short to V_{S and} soft short at turn on) across an open collector output (pin 10) through a current sinking when the event is detected.

Clipping Detection Waveforms

When a certain distortion level is reached at any of the outputs a current sinking at pin 10 is triggered. Whenever the amplifier is overdriven this function allows gain compression possibility.

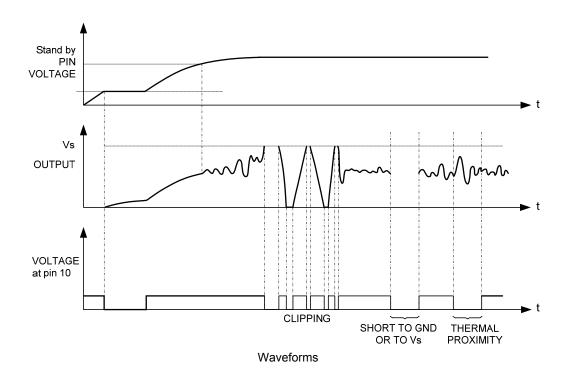

Thermal Shutdown

In this case the output 10 will signal the proximity of the junction temperature to the shutdown threshold. Typically current sinking at pin 10 will start ~10°C before the shutdown threshold is reached.

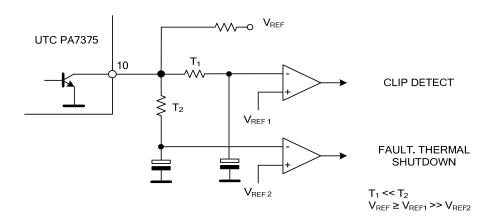

■ TYPICAL APPLICATION INFORMATION (Cont.)

HANDLING OF THE DIAGNOSTICS SIGNAL

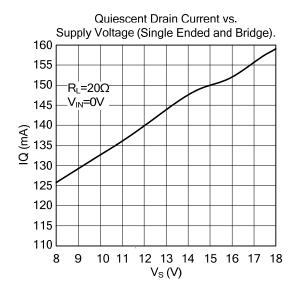
Because of kinds of information(clipping detection, output fault, thermal proximity) is available at the same pin, this signal must be handled to discriminate each event which could be done by taking into account the different timing of the diagnostic output during each case.

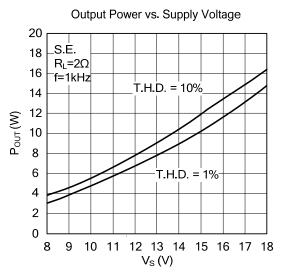


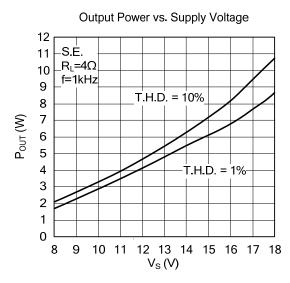
Output Fault Waveforms

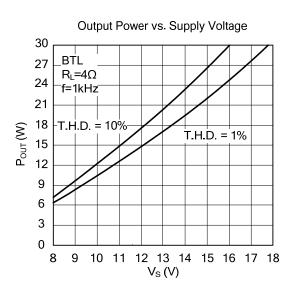


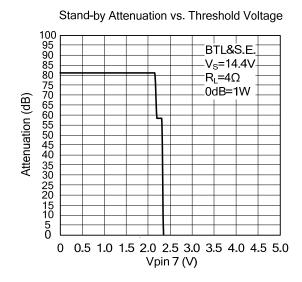
Fault Waveforms

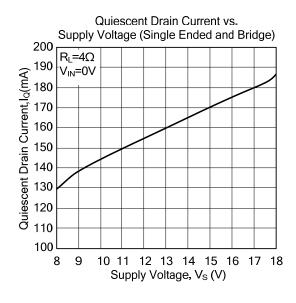

■ TYPICAL APPLICATION INFORMATION (Cont.)

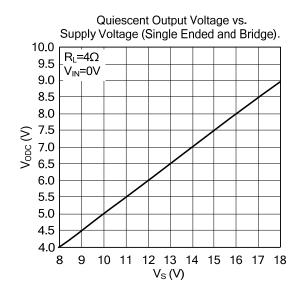

The clip detector signaling produces a low level at pin 10 normally; based on this an interface circuitry to differentiate the information is necessary in the schematic below

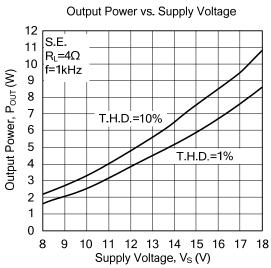


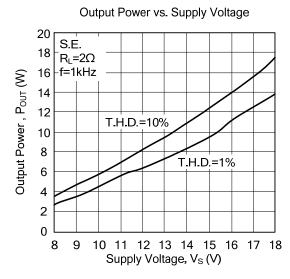

■ TYPICAL CHARACTERISTICS

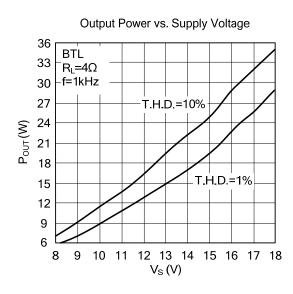


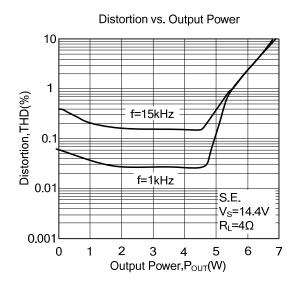


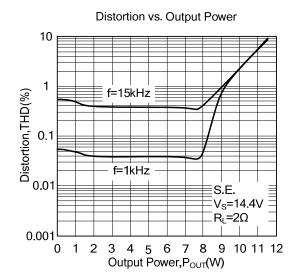


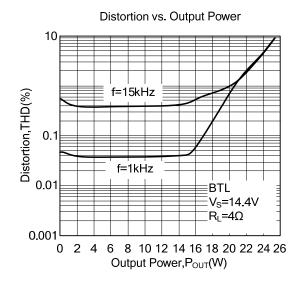





■ TYPICAL CHARACTERISTICS (Cont.)







■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.