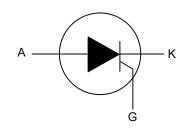


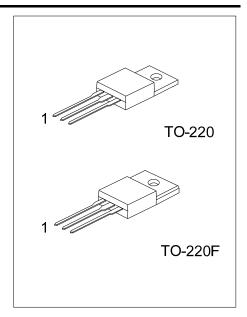
UNISONIC TECHNOLOGIES CO., LTD

BT152 Preliminary SCR

THYRISTOR

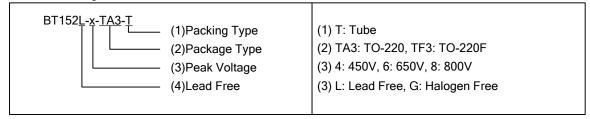
■ DESCRIPTION

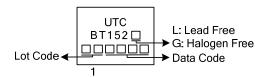

The UTC **BT152** is a thyristor, it uses UTC's advanced technology to provide customers with high bidirectional blocking voltage capability and high thermal cycling performance, etc.


The UTC **BT152** is suitable for motor control, industrial, static switching, heating and domestic lighting, etc.

■ FEATURES

- * High bidirectional blocking voltage capability
- * High thermal cycling performance




ORDERING INFORMATION

Ordering Number		Dookaga	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
BT152L-x-TA3-T	BT152G-x-TA3-T	TO-220	K	Α	G	Tube	
BT152L-x-TF3-T	BT152G-x-TF3-T	TO-220F	K	Α	G	Tube	

Note: Pin Assignment: K: Cathode A: Anode G: Gate

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 3

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT	
	BT152-4		450	٧	
Repetitive Peak Off-State Voltages	BT152-6	V_{DRM}, V_{RRM}	650	٧	
	BT152-8		800	V	
Average On-State Current	Half Sine Wave, T _{MB} ≤103°C	$I_{T(AV)}$	13	Α	
RMS On-State Current	All Conduction Angles	$I_{T(RMS)}$	20	Α	
Non Repetitive Surge Peak On-State	t=10ms		200	Α	
Current (Half Sine Wave; T _J =25°C Prior to Surge)	t=8.3ms	I _{TSM}	220	Α	
I ² t Value for Fusing	t=10ms	l ² t	200	A^2s	
Repetitive Rate of Rise of On-State Current After Triggering	I_{TM} =50A, I_{G} =0.2A, dI_{G} /dt=0.2A/ μ s	dl _⊤ /dt	200	A/μs	
Peak Gate Current		I_{GM}	5	Α	
Peak Gate Voltage		V_{GM}	5	٧	
Peak Reverse Gate Voltage	V_{RGM}	5	V		
Peak Gate Power		P_GM	20	W	
Average Gate Power Dissipation	Over Any 20ms Period	$P_{G(AV)}$	0.5	W	
Operating Junction Temperature	T_J	125	ů		
Storage Junction Temperature		T_{STG}	-40~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES

PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient	In Free Air	θ_{JA}		60		K/W
Thermal Resistance Junction to Mounting Base		Ө _{ЈМВ}			1.1	K/W

■ STATIC CHARACTERISTICS (T_J=25°C unless otherwise stated)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Gate Trigger Current	I_{GT}	V _D =12V, I _T =0.1A		3	32	mA
Latching Current	IL	V _D =12V, I _{GT} =0.1A		25	80	mA
Holding Current	I _H	V _D =12V, I _{GT} =0.1A		15	60	mA
On-State Voltage	V_T	I _T =40A		1.4	1.75	٧
Osta Trianna Valtana		V _D =12V, I _T =0.1A		0.6	1.5	V
Gate Trigger Voltage	V_{GT}	V _D =V _{DRM(max)} , I _T =0.1A, T _J =125°C	0.25	0.4		V
Off-State Leakage Current	I _D	$V_D = V_{DRM(max)}, V_R = V_{RRM(max)},$		0.2	1.0	mA
	I _R	T _J =125°C		0.2	1.0	mA

■ **DYNAMIC CHARACTERISTICS** (T_J=25°C unless otherwise stated)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Critical Rate of Rise of Off-State Voltage	dV _D /dt	V _{DM} =67%V _{DRM(max)} , T _J =125°C, Exponential Waveform Gate Open Circuit	200	300		V/µs
Gate Controlled Turn-On Time	IOT	$V_D = V_{DRM(max)}$, $I_G = 0.1A$, $dI_G/dt = 5A/\mu s$, $I5_{TM} = 40A$		2		μs
Circuit Commutated Turn-Off Time	ta	I_{TM} =50A, V_R =25V, dI_{TM}/dt =30A/ μ s, dV_D/dt =50V/ μ s, R_{GK} =100 Ω		70		μs

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.