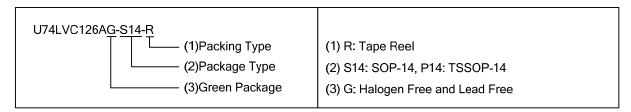

# QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS

#### ■ DESCRIPTION

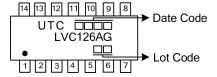
The **U74LVC126A** are quadruple bus buffer gates featuring independent line drivers with 3-state outputs. When OE is low, the nY outputs are in a high-impedance state. When OE is high, the device passes non-inverted data from the nA input to its nY output.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3V to 5V devices. This feature allows the use of these devices as translators in a mixed 3.3V/5V system environment.

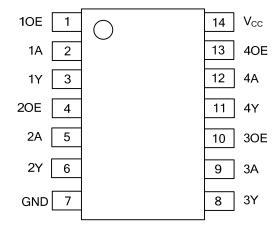



#### **■ FEATURES**


- \* 1.65V to 3.6V  $V_{\text{CC}}$  Operation
- \* Max  $t_{PD}$  of 4.7ns from A to Y at  $V_{CC}$  = 3.3V,  $C_L$  = 50pF,  $R_L$  = 500 $\Omega$
- \* ±24mA output driver at 3V

#### ORDERING INFORMATION

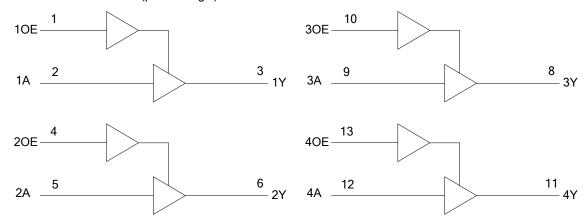
| Ordering Number   | Package  | Packing   |
|-------------------|----------|-----------|
| U74LVC126AG-S14-R | SOP-14   | Tape Reel |
| U74LVC126AG-P14-R | TSSOP-14 | Tape Reel |




#### ■ MARKING



www.unisonic.com.tw 1 of 6


#### **■ PIN CONFIGURATION**



## **■ FUNCTION TABLE**

| INF | OUTPUT |   |
|-----|--------|---|
| OE  | А      | Y |
| Н   | Н      | Н |
| Н   | L      | L |
| L   | X      | Z |

## ■ LOGIC DIAGRAM (positive logic)



## ■ ABSOLUTE MAXIMUM RATING (unless otherwise specified)

| PARAMETER                                                                         | SYMBOL           | RATINGS                   | UNIT |
|-----------------------------------------------------------------------------------|------------------|---------------------------|------|
| Supply Voltage                                                                    | V <sub>CC</sub>  | -0.5~6.5                  | V    |
| Input Voltage                                                                     | V <sub>IN</sub>  | -0.5~6.5                  | V    |
| Output Voltage                                                                    | V <sub>OUT</sub> | -0.5~V <sub>CC</sub> +0.5 | V    |
| Input Clamp Current (V <sub>IN</sub> <0)                                          | I <sub>IK</sub>  | -50                       | mA   |
| Output Clamp Current (V <sub>OUT</sub> <0, or V <sub>OUT</sub> >V <sub>CC</sub> ) | I <sub>OK</sub>  | -50                       | mA   |
| Output Current                                                                    | I <sub>OUT</sub> | ±50                       | mA   |
| V <sub>CC</sub> or GND Current                                                    | Icc              | ±100                      | mA   |
| Power Dissipation                                                                 | P <sub>D</sub>   | 500                       | mW   |
| Storage Temperature                                                               | T <sub>STG</sub> | -65 ~ +150                | °C   |

Note: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

#### ■ THERMAL DATA

| PARAMETER            |          | SYMBOL          | RATINGS | UNIT     |
|----------------------|----------|-----------------|---------|----------|
| Lunations to Ambient | SOP-14   | 0               | 86      | , C // V |
| Junctions to Ambient | TSSOP-14 | θ <sub>JA</sub> | 113     | °C/W     |

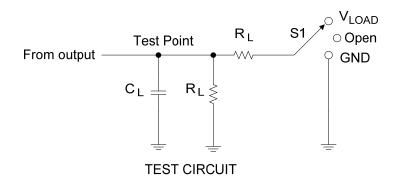
#### ■ RECOMMENDED OPERATING COMDITIONS

| PARAMETER                          | SYMBOL          | CONDITIONS                | MIN                   | TYP | MAX                  | UNIT |  |
|------------------------------------|-----------------|---------------------------|-----------------------|-----|----------------------|------|--|
| Supply Voltage                     | V               | Operating                 | 1.65                  |     | 3.6                  | V    |  |
| Supply Voltage                     | $V_{CC}$        | Data retention only       | 1.5                   |     |                      | V    |  |
|                                    |                 | $V_{CC}$ = 1.65V to 1.95V | V <sub>CC</sub> ×0.65 |     |                      |      |  |
| High-Level Input Voltage           | $V_{IH}$        | $V_{CC}$ = 2.3V to 2.7V   | 1.7                   |     |                      | V    |  |
|                                    |                 | $V_{CC}$ = 2.7V to 3.6V   | 2                     |     |                      |      |  |
|                                    |                 | $V_{CC}$ = 1.65V to 1.95V |                       |     | V <sub>CC</sub> ×.35 |      |  |
| Low-Level Input Voltage            | $V_{IL}$        | $V_{CC}$ = 2.3V to 2.7V   |                       |     | 0.7                  | V    |  |
|                                    |                 | $V_{CC}$ = 2.7V to 3.6V   |                       |     | 0.8                  |      |  |
| Input Voltage                      | $V_{IN}$        |                           | 0                     |     | 5.5                  | V    |  |
| Output Voltage                     | $V_{OUT}$       |                           | 0                     |     | V <sub>CC</sub>      | V    |  |
|                                    |                 | V <sub>CC</sub> = 1.65V   |                       |     | -4                   | mA   |  |
| High-Level Output Current          |                 | $V_{CC} = 2.3V$           |                       |     | -8                   |      |  |
| High-Level Output Current          | I <sub>OH</sub> | $V_{CC} = 2.7V$           |                       |     | -12                  | IIIA |  |
|                                    |                 | $V_{CC} = 3V$             |                       |     | -24                  |      |  |
|                                    |                 | $V_{CC} = 1.65V$          |                       |     | 4                    |      |  |
| Low Lovel Output Current           |                 | $V_{CC} = 2.3V$           |                       |     | 8                    | mΛ   |  |
| Low-Level Output Current           | I <sub>OL</sub> | $V_{CC} = 2.7V$           |                       |     | 12                   | mA   |  |
|                                    |                 | $V_{CC} = 3V$             |                       |     | 24                   |      |  |
| Input Transition Rise or Fall Rate | Δt/ΔV           |                           | 0                     |     | 10                   | ns/V |  |
| Operating Temperature              | $T_A$           |                           | -40                   |     | 85                   | °C   |  |

<sup>2.</sup> Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

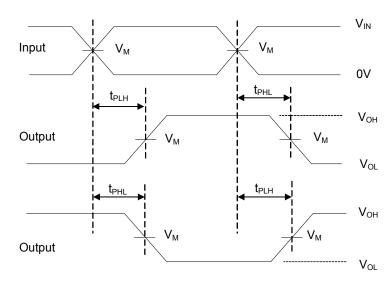
## ■ ELECTRICAL CHARACTERISTICS (T<sub>A</sub> =25°C, unless otherwise specified)

| PARAMETER                             | SYMBOL               | TEST CONDITIONS                                           | MIN                  | TYP | MAX  | UNIT |
|---------------------------------------|----------------------|-----------------------------------------------------------|----------------------|-----|------|------|
|                                       |                      | $I_{OH} = -100 \mu A$ , $V_{CC} = 1.65 V$ to 3.6 V        | V <sub>CC</sub> -0.2 |     |      |      |
|                                       |                      | $I_{OH} = -4mA$ , $V_{CC} = 1.65V$                        | 1.2                  |     |      | V    |
| High Lovel Output Voltage             | V                    | $I_{OH} = -8mA$ , $V_{CC} = 2.3V$                         | 1.7                  |     |      |      |
| High-Level Output Voltage             | $V_{OH}$             | $I_{OH} = -12mA, V_{CC} = 2.7V$                           | 2.2                  |     |      | V    |
|                                       |                      | $I_{OH} = -12 \text{mA}, V_{CC} = 3 \text{V}$             | 2.4                  |     |      |      |
|                                       |                      | $I_{OH}$ = -24mA, $V_{CC}$ = 3V                           | 2.3                  |     |      |      |
|                                       |                      | $I_{OL}$ = 100 $\mu$ A, $V_{CC}$ = 1.65 $V$ to 3.6 $V$    |                      |     | 0.1  |      |
|                                       | V <sub>OL</sub>      | $I_{OL} = 4mA, V_{CC} = 1.65V$                            |                      |     | 0.45 | V    |
| Low-Level Output Voltage              |                      | $I_{OL} = 8mA, V_{CC} = 2.3V$                             |                      |     | 0.7  |      |
|                                       |                      | $I_{OL} = 12mA, V_{CC} = 2.7V$                            |                      |     | 0.4  |      |
|                                       |                      | $I_{OL}$ = 24mA, $V_{CC}$ = 3V                            |                      |     | 0.55 |      |
| Input Leakage Current (A or OE input) | I <sub>I(LEAK)</sub> | $V_{IN}$ = 5.5V or GND, $V_{CC}$ = 3.6V                   |                      |     | ±1   | μA   |
| High-impedance state Current          | $I_{OZ}$             | $V_{OUT} = V_{CC}$ or GND, $V_{CC} = 3.6V$                |                      |     | ±1   | μΑ   |
| Quiescent Supply Current              | I <sub>CC</sub>      | $V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$ , $V_{CC} = 3.6V$ |                      |     | 1    | μΑ   |
| Additional quiescent supply           | A1                   | One input at $V_{CC}$ - 0.6V, $V_{CC}$ =2.7V to           |                      |     | 500  |      |
| current                               | Δl <sub>CC</sub>     | 3.6V, other inputs at V <sub>CC</sub> or GND              |                      |     | 300  | μΑ   |
| Input Capacitance                     | $C_{IN}$             | $V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.3V$                 |                      | 4.5 |      | pF   |
| Output Capacitance                    | $C_OUT$              | $V_{OUT} = V_{CC}$ or GND, $V_{CC} = 3.3V$                |                      | 7   |      | pF   |


# ■ SWITCHING CHARACTERISTICS (T<sub>A</sub> =25°C , unless otherwise specified)

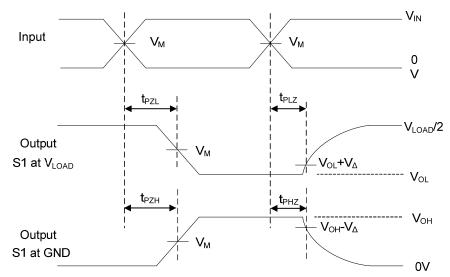
| PARAMETER                      | SYMBOL             | TEST CONDITIONS             | MIN                                                          | TYP  | MAX | UNIT |
|--------------------------------|--------------------|-----------------------------|--------------------------------------------------------------|------|-----|------|
|                                |                    | V <sub>CC</sub> =1.8V       |                                                              | 13.2 |     | ns   |
| Propagation delay from input A |                    | V <sub>CC</sub> =2.5V ±0.2V | 1                                                            |      | 7.2 |      |
| to output Y                    | t <sub>PD</sub>    | V <sub>CC</sub> =2.7V       |                                                              |      | 5.2 |      |
|                                |                    | V <sub>CC</sub> =3.3V ±0.3V | 13.2 1 7.2 5.2 1 4.7 14.3 1 8.3 1 5.7 14.7 1 8.7 1 8.7 1.3 6 | 4.7  |     |      |
|                                |                    | V <sub>CC</sub> =1.8V       |                                                              | 14.3 |     | ns   |
| Propagation delay from input   |                    | V <sub>CC</sub> =2.5V ±0.2V | 1                                                            |      | 8.3 |      |
| OE to output Y                 | t <sub>EN</sub>    | V <sub>CC</sub> =2.7V       |                                                              |      | 6.3 |      |
|                                |                    | V <sub>CC</sub> =3.3V ±0.3V | 1                                                            |      | 5.7 |      |
|                                |                    | V <sub>CC</sub> =1.8V       |                                                              | 14.7 |     | ns   |
| Propagation delay from input   |                    | V <sub>CC</sub> =2.5V ±0.2V | 1                                                            |      | 8.7 |      |
| OE to output Y                 | t <sub>DIS</sub>   | V <sub>CC</sub> =2.7V       |                                                              |      | 6.7 |      |
|                                |                    | V <sub>CC</sub> =3.3V ±0.3V | 1.3                                                          |      | 6   |      |
| Skew between any two outputs   |                    |                             |                                                              |      |     |      |
| of the same package switching  | t <sub>SK(O)</sub> | V <sub>CC</sub> =3.3V ±0.3V |                                                              |      | 1   | ns   |
| in the same direction          |                    |                             |                                                              |      |     |      |

# ■ OPERATING CHARACTERISTICS (T<sub>A</sub> =25°C , unless otherwise specified)


| PARAMETER                              | SYMBOL   | TEST CONDITIONS              |                       | MIN | TYP | MAX | UNIT |
|----------------------------------------|----------|------------------------------|-----------------------|-----|-----|-----|------|
| Power dissipation capacitance per gate |          | f-10MH- Outputs              | V <sub>CC</sub> =1.8V |     | 20  |     | pF   |
|                                        |          | f=10MHz, Outputs<br>enable   | V <sub>CC</sub> =2.5V |     | 21  |     | pF   |
|                                        |          | enable                       | V <sub>CC</sub> =3.3V |     | 22  |     | pF   |
|                                        | $C_{PD}$ | f-10MH- Outputs              | V <sub>CC</sub> =1.8V |     | 2   |     | pF   |
|                                        |          | f=10MHz, Outputs<br>disabled | V <sub>CC</sub> =2.5V |     | 3   |     | pF   |
|                                        |          |                              | V <sub>CC</sub> =3.3V | ·   | 4   |     | pF   |

#### **■ TEST CIRCUIT AND WAVEFORMS**




S1 **TEST** V<sub>CC</sub> =1.8V±0.15V  $V_{CC} = 2.5V \pm 0.2V$  $V_{CC} = 2.7V \text{ AND } 3.3V \pm 0.3V$  $t_{PLH}/t_{PHL}$ Open Open Open  $t_{PLZ}/t_{PZL}$  $V_{LOAD}$  $V_{\text{LOAD}}$ 6V GND GND  $t_{PHZ}/t_{PZH}$ GND

|                 | Inj      | put                             | \/                 |                   | C              | В     |              |
|-----------------|----------|---------------------------------|--------------------|-------------------|----------------|-------|--------------|
| V <sub>CC</sub> | $V_{IN}$ | t <sub>R</sub> , t <sub>F</sub> | $V_{M}$            | $V_{LOAD}$        | C <sub>L</sub> | $R_L$ | $V_{\Delta}$ |
| 1.8V±0.15V      | $V_{CC}$ | ≤2ns                            | V <sub>CC</sub> /2 | 2*V <sub>CC</sub> | 30pF           | 1kΩ   | 0.15V        |
| 2.5V±0.2V       | $V_{CC}$ | ≤2ns                            | V <sub>CC</sub> /2 | 2*V <sub>CC</sub> | 30pF           | 500Ω  | 0.15V        |
| 2.7V            | $V_{CC}$ | ≤2ns                            | 1.5V               | 6V                | 50pF           | 500Ω  | 0.3V         |
| 3.3V±0.3V       | $V_{CC}$ | ≤2ns                            | 1.5V               | 6V                | 50pF           | 500Ω  | 0.3V         |



**Voltage Waveforms Propagation Delay Times** 

### ■ TEST CIRCUIT AND WAVEFORMS(Cont.)



Voltage Waveforms Enable and Disable Times

Notes: 1. C<sub>L</sub> includes probe and jig capacitance.

- 2. All input pulses are supplied by generators having the following characteristics: PRR ≤1MHz, Z<sub>0</sub> = 50Ω.
- 3.  $t_{\text{PLH}}$  and  $t_{\text{PHL}}$  are the same as  $t_{\text{PD}}.$
- 4.  $t_{\text{PZL}}$  and  $t_{\text{PZH}}$  are the same as  $t_{\text{EN}}$ .
- 5.  $t_{\text{PLZ}}$  and  $t_{\text{PHZ}}$  are the same as  $t_{\text{DIS}}..$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.